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Executive Summary 
The overall goal of the MOMENTUM project is to develop a set of mobility data analysis and exploitation methods, 
transport models and planning and decision support tools able to capture the impact of emerging transport 
modes, such as shared mobility services, and ICT-driven behavioural changes on urban mobility, in order to 
support local authorities in the task of designing the right policy mix to exploit the full potential of emerging 
mobility solutions. 

The general objective of Deliverable 4.1 is to describe the models and algorithms developed to incorporate 
emerging mobility solutions into strategic transport models, both in terms of supply and demand. From this 
general objective, the specific goals posed for this Deliverable are: 

• Elucidate the modular approach followed for the development of the different models for new mobility 
solutions. 

• Present the models and algorithms developed or enhanced according to the test cases proposed in D2.2, 
along with the consideration for the benefits to cities outside the MOMENTUM case studies. 

• Introduce a new modelling approach designed to combine the agent-based principles within the strategic 
four-step approach. 

• Summarize the opportunities for modelling the emerging mobility solutions, based on the developed 
models and methods. 

The main outcomes of Deliverable 4.1 are the following: 

• A list of modules, which encompasses the various developments required to model emerging mobility 
solutions. This could be used as a basis by the future researchers for extending the research on modelling 
frameworks for emerging mobility solutions. 

• A set of models and algorithms for modelling different aspects of the emerging mobility solutions. This 
set of models and algorithms include: 

o Induced demand: (i) Demand elasticity calculation and (ii) Estimation of irregular and infrequent 
trips of station based round trip sharing systems 

o OD: OD matrix clustering 
o Mode choice: (i) Disaggregate mode choice model and (ii) Data-driven shared mobility demand 

prediction 
o Synthetic population: Generation of synthetic population, along with destination choice 
o Fleet management: (i) Planning algorithms and (ii) Models for operational aspects 
o Car-ownership: (i) Aggregate model and (ii) Disaggregate model 
o Traffic assignment: (i) Assignment method for urban environments and (ii) Hybrid dynamic traffic 

assignment model 
o Emission: (i) Static emission model and (ii) Dynamic emission model 

• An intermediate modelling framework, which integrates the principles of agent-based approaches within 
the traditional four-step approach, providing an opportunity for cities to evaluate and integrate shared 
mobility systems, and form long term planning strategy. 
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1. Introduction 

1.1. Scope and objective 

The overall goal of the MOMENTUM project is to develop a set of mobility data analysis and exploitation methods, 
transport models, and planning and decision support tools, which can capture the impact of emerging transport 
modes (such as shared mobility services) and ICT-driven behavioural changes on urban mobility, to support local 
authorities in the task of designing the right policy mix, to exploit the full potential of emerging mobility solutions. 

To achieve this general goal, one of the objectives set is to develop new modelling approaches that are able to 
ascertain the impact of emerging mobility concepts and solutions. This means that changes required to 
incorporate emerging mobility solutions into strategic transportation models, both in terms of supply and 
demand, have to be formulated and explanatory and predictive models have to be constructed. Furthermore, 
methods to include inherent uncertainty in the developed models must be designed. This document falls under 
the purview of the aforementioned goals.  

Deliverable 4.1 describes the models developed in MOMENTUM, which are able to capture and mimic user 
interaction and behaviour with emerging mobility services in the strategic transport models, both in terms of 
supply and demand. Thus, Deliverable 4.1 aims to: 

• Elucidate the modular approach followed for the development of the different models for new mobility 
solutions. 

• Present the models and algorithms developed or enhanced according to the test cases proposed in D2.2, 
along with the consideration for the benefits to cities outside the MOMENTUM case studies. 

• Introduce a new modelling approach designed to combine the agent-based principles within the strategic 
four-step approach. 

• Summarize the opportunities for modelling the emerging mobility solutions, based on the models and 
approach designed and developed. 

1.2. Structure of the document 

The remainder of this report is divided into seven sections.  

• The modular approach followed for the development of the different models is described in Section 2.  

• An intermediate modelling approach, which integrates the disaggregate approach of the agent-based 
models within the traditional strategic approach, is elucidated in Section 3. 

• Section 4 includes the presentation of four modules, namely (i) induced demand (section 4.1), (ii) OD 
(Section 4.2), (iii) synthetic population (Section 4.3) and (iv) mode choice (Section 4.4).  

• Fleet management related algorithms are presented in Section 5. 

• Traffic assignment (Section 6.1) and car ownership (Section 6.2) modules are included in the subsequent 
section. 

• Section 7 contains the Emission module.  

• Finally, main conclusions are summarised in Section 8. 

1.3. Applicable documents 

Applicable documents: 

[I] MOMENTUM D1.2 Data Management Plan and Open Data Policy, November 2019  
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[II] MOMENTUM D2.2 Specification of MOMENTUM Test Cases, February 2020  

[III] MOMENTUM D3.1 Data Inventory and Quality Assessment, March 2020  

[IV] MOMENTUM D3.2 MOMENTUM Data Repository, June 2020 

[V] MOMENTUM D3.3 Methodologies and Algorithms for Mobility Data Analysis, December 2020  
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2. A modular approach 
Developments described in this report are based on a modular approach. Different requirements and possibilities 
for advancing the strategic transport models of the cities are identified and categorized as different modules, as 
shown in Figure 1. For brevity, the modules are further grouped into four, namely demand, supply, fleet 
management and sustainability. 

 

Figure 1. Modular approach followed for the development of models in MOMENTUM  

The group ‘Demand’ includes the first three steps of traditional 4-step modelling approach (i.e., trip generation 
and distribution and mode choice). While cities continue to use the traditional strategic 4-step model, modelling 
of shared mobility calls for agent-based approaches. Therefore, it is decided to integrate the disaggregate 
approach of the agent-based models within the traditional strategic 4-step approach, so that cities can continue 
using their existing models, but with extended capabilities that enable to evaluate shared mobility systems. 
Therefore, a new module for synthetic population generation is added. Furthermore, introduction of new 
transport services like shared systems alter the transport supply. As a consequence, the total demand in the 
network can change. Hence, to reflect this supply-demand interaction (i.e., demand elasticity with respect to a 
change in supply), another module called ‘induced demand’ is included. 

The fourth step of the traditional modelling approach (i.e., traffic assignment) is included under supply category. 
Furthermore, a module named ‘car-ownership’ is also included in this category. With an increasing interest 
towards sustainable transport in cities, there is a growing concern for private car ownership and use. Hence, a 
module for car-ownership has been added. 

Between supply and demand, a third category called ‘Fleet Management’ is introduced. When modelling shared 
mobility systems, it is pertinent to mimic the operations of the shared system operators. Hence this category is 
created, which contains algorithms for the planning (e.g., to locate stations) and operations (e.g., to assign vehicles 
to users) of shared mobility services. 

Finally, emission calculation and determination of accessibility and network coverage are included under the 
category ‘Sustainability’. There is an increasing interest towards emissions and accessibility from cities, and hence, 
the aforementioned two measures are added. Under each of the modules, we develop one or more new models. 
A brief on each of these models is provided in the subsequent sections. 
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3. Modelling schema 
Considering the existing literature and the models used by the cities, a new modelling framework is designed to 
extend the traditional four-step approach, and the same is presented in this section. Existing literature related to 
modelling of shared mobility generally shows the use of agent and activity-based approaches. For example, 
Martínez et al. (2017) developed an agent-based model to simulate one-way car-sharing systems in Lisbon. They 
incorporated operation side of the system, along with a stochastic demand model. Similarly, Ciari, Balac and 
Axhausen (2016) presented the use of MATSim (an activity-based multiagent simulation system) for modelling 
car-sharing systems. Another example is the application of agent-based travel demand model MobiTopp by Heilig 
et al. (2015) for modelling roundtrip-based and free-floating car-sharing systems. 

While the agent-based approaches are seen as a natural way to model shared mobility (since they offer the 
possibility of a more realistic representation of the shared mobility), many European cities continue to use the 
traditional strategic four-step modelling approach. Therefore, there is a need to extend the conventional four-
step approach, to make it more suitable for modelling shared mobility. Existing pertinent literature in this 
direction include Friedrich, Hartl and Magg (2018); and Friedrich and Noekel (2017). Friedrich and Noekel (2017) 
focused on the integration of car-sharing systems into the four-step approach, by incorporating the system in the 
timetable-based PT assignment. This approach does not consider the operation side of the sharing system. In a 
subsequent research, Friedrich et al. (2018) developed a matching algorithm for ridesharing, which could be 
integrated within the four-step approach. Demand is based on fixed shares. Thus, a realistic consideration of the 
mode choice is not implemented. 

Literature findings show that there is no substantial research on the integration of shared mobility into the four-
step approach. The existing ones focus on single type of shared systems (car-sharing or ridesharing), without a 
comprehensive approach. In addition, bike-sharing systems and models for deriving pertinent Key Performance 
Indicators (KPIs), such as car-ownership and induced demand, are not integrated into the four-step approach. 
Therefore, a modelling framework, which integrates the disaggregate approach of the agent-based models 
within the traditional strategic transport modelling approach, is designed. This new framework, shown in Figure 
2, is called ‘Intermediate modelling approach’, as the approach stands in between the traditional four-step 
approach and the agent-based approaches. 

This new framework will continue to use the existing trip generation and trip distribution steps from the traditional 
four-step approach for OD matrix generation [indicated as step (1) in Figure 2]. Following trip distribution, the OD 
matrix is disaggregated using socio-demographic data to generate synthetic population and destination choice 
[step (2) in Figure 2]. Based on this synthetic population, the demand for different modes is estimated using mode 
choice models. The conventional aggregate mode choice models of the cities usually include only conventional 
modes, and, hence, an updated model that also includes different shared mobility systems is required. 

In general, several cities do not have a sufficient data to estimate a mode choice model, which includes all 
conventional modes and the different shared mobility systems. Wherein data is available, the development of a 
mode choice model between conventional systems as a whole and the different shared mobility systems could be 
beneficial, as such a model could be used in other cities. This kind of use is possible, given that it is possible to 
generalize the demand characteristics of shared mobility systems [e.g., unique profile of users such as younger 
individuals, possession of Bachelor's degree or higher, and holding of PT passes (Becker, Ciari and Axhausen, 2017; 
Clewlow, 2016). Hence, the proposed framework has been designed to accommodate such a procedure. In such 
a case, the calculation of mode share will be a bilevel procedure with the split between conventional systems as 
a whole and the different shared mobility systems estimated at the top (step (3) in Figure 2). The split between 
the different conventional systems is estimated at the bottom, using the conventional aggregate mode choice 
model of the city. 
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Figure 2. Intermediate modelling approach  

Note:  
1. BS: Bike-Sharing; CS: Car-Sharing; RS: Ridesharing; Acc.: Accessibility; NC: Network Coverage 
2. Red colour shaded boxes indicate the existing components in the traditional four-step approach 
3. Partial red coloured ones are those that are already found in the traditional four-step approach, however, improvements 

and alternative models are presented in this deliverable (e.g., OD clustering and classification presented in Section 4.2) 
4. Accessibility and network coverage will be inherent parts of fleet management. 

Once the modal share at the top level is estimated using the disaggregate mode choice model, the disaggregate 
demand of the shared systems is fed into the fleet management algorithms, which assign vehicles and simulate 
the operations of the shared vehicles [step (4) in Figure 2)]. Initial skim matrix is utilised for the travel times in the 
first iteration. If there are any unserved demand, they are reassigned to another mode through the disaggregate 
mode choice model. Once this process is carried out, the trips to be served by the shared vehicles are aggregated. 
This will be the mode specific demand corresponding to the shared mobility systems. Similarly, the demand 
corresponding to the conventional modes as a whole is aggregated and fed into the conventional aggregate mode 
choice model [step (5) in Figure 2)]. Thus, the mode specific demand corresponding to the individual conventional 
modes could be obtained. 

Subsequent to the estimation of the mode specific demands of the conventional modes and the shared mobility 
systems (using the disaggregate and conventional aggregate mode choice models), they are fed into the existing 
traffic assignment model [step (6) in Figure 2)]. Based on the traffic assignment results, it might be required to 
iterate the sequence from mode choice or fleet management. Models with feedback between traffic assignment 



 

Deliverable 4.1 New transport modelling approaches 
for emerging mobility solutions 

Page 21 of 137 

Copyright © 2021 by MOMENTUM Version: Issue 1 Draft 2  

 

and mode choice steps already exist in literature and it is not something new. Nevertheless, a criterion for iterating 
from the mode choice step could be based on the extent of change in travel times (smaller changes might not 
result in a significant change in modal split). Similarly, to iterate from the fleet management step, the criteria could 
be based on the feasibility of the shared mobility trips (which depends on the updated travel times from the traffic 
assignment algorithm), and the need for assigning a different vehicle.  

Once an equilibrium is reached, post processing is carried out to calculate emissions [step (7) in Figure 2)]. Based 
on this updated modelling sequence, KPIs are calculated, along with estimation of car-ownership [step (8) in Figure 
2)] and induced demand [step (9) in Figure 2)] and the entire modelling sequence could be rerun, with respect to 
these estimations. Although different equilibrium checks could be introduced (e.g., after estimation of induced 
demand and car-ownership at the end), they are avoided in view of the convergence issues and to reduce 
additional complexity. Hence, the decision to rerun the model after estimation of induced demand and car-
ownership is left to the discretion of the modeller. 

The extensions mentioned above are described in the subsequent sections. The sections are ordered in a way to 
maintain the grouping (i.e., the four categories) presented in Figure 1. Hence, the structure will differ from the 
order of steps indicated in Figure 2. Nevertheless, to connect the sections with the step numbers from Figure 2 
and to support the reader, the structure is summarized in Figure 3. In addition, to enable easy navigation, links to 
modules are provided in the header. 

 

Figure 3. Structure of Sections 4 to 7  
Note: The numbers in the brackets, i.e., (1), (2), etc., correspond to the numbers in Figure 2.
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While demand elasticity model is directly related to induced demand module, the estimation of demand for 
roundtrip station-based car-sharing system may appear to be inconsistent for inclusion under the module. A 
round-trip station-based car-sharing system can be introduced in a city to complement public transport, by 
designing the business model to focus on serving special trips (e.g., trips to furniture stores). The OD matrices 
generated through the trip generation and distribution steps (in the traditional 4-step approach), usually, do not 
adequately cover this demand stratum (i.e., special trips). Furthermore, when the car-sharing system is small, the 
modal split for them is very less (< 50 trips per day), making their use a very rare event, thereby resulting in a 
situation where it is not possible to account them through the traditional mode choice models. Therefore, the 
demand has to be additionally estimated using an external approach. Since the demand corresponding to the 
system is an addition to the trips in the conventional OD matrices, the estimation approach is included as part of 
induced demand module. 

In the traditional 4-step approach, the general OD matrix is usually generated through trip generation and 
distribution steps. However, with the increasing availability of cell phone data, the generation of OD matrices from 
such data is rising. In this context, OD matrices can be derived more frequently, such as daily or even hourly. 
Nonetheless, this generation of OD matrices is based on past mobile phone data. To support the prediction of 
future OD matrices based on past matrix information, Section 4.2 proposes a machine learning approach to derive 
representative OD matrices through clustering and use a classifier to assign the most representative matrix 
available to each day in the future1.  

Disaggregate mode choice model and data-driven shared mobility demand estimation model1 described in 
Sections 4.4.1 and 4.4.2 have a substitutional nature, since the use of one negates the need for the other. Mode 
choice models are the commonly used methods in transport models. However, if one wishes to use shared 
mobility service data, the data-driven demand model can be used to replace the disaggregate mode choice model. 
The output of the data-driven demand model is an OD matrix of shared mobility, and the information of this matrix 
can be fed into the synthetic population module. Since the entry matrix is already mode specific, the output of the 
synthetic population does not have to pass through the disaggregate mode choice model, rather it can enter 
directly to the fleet management module.  

In a similar fashion, static (Section 7.1) and dynamic (Section 7.2) emission models have a substitution nature. 
Static traffic assignment models are the usual methods employed in the traditional strategic 4-step approach, and 
hence, a static emission model is a necessity. Nevertheless, there is a growing interest in dynamic traffic 
assignment, and aiming at such models, a dynamic emission model has also been developed.

 

 

1 Th OD clustering and classification approach and the shared mobility demand estimation model are data-driven 
approaches and the latter depends on the former. The use of them would result in an alternate (to the intermediate 
approach shown in Figure 2) framework and a feedback between fleet management module/traffic assignment and 
shared mobility demand estimation is not possible due to the data-driven nature. Similarly, a feedback between 
induced demand and  OD generation step cannot be implemented.   
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4. Demand 
This section covers the modules for demand related aspects. Models concerning induced demand are presented 
at first, followed by a section on OD matrix clustering and classification. Then, synthetic population generation 
and destination choice models are described, and subsequently, models under mode choice module are 
elucidated. 

4.1. Induced demand module 

4.1.1. Demand elasticity 

4.1.1.1. Motivation and objective 

Under the continuous pressure of congestion, urban mobility ecosystems are in rapid transition. Many new modes 
of transport become available that shake up classical transport systems. Next to the new modes of transport, also 
classical sustainable alternatives such as biking and public transport gain in importance. Cities that want to play a 
pioneering role in this evolution explore how they can adapt their infrastructure to accommodate these changes, 
for example, by opening part of the car-infrastructure for other transport modes such as shared mobility services. 
When using traditional transport models (traffic assignment with modal choice) on these supply-side changes, this 
often leads to overly detrimental predictions on vehicle loss time and queue lengths. In reality, when faced with 
exorbitant travel times, car drivers often seek and find alternatives that are not accounted for within the model 
structure, for example departure time shifts, shifts in activity and activity locations, etc. In turn, this leads to cost-
benefit analyses that are overly pessimistic, and as a result to valuable changes to the transport infrastructure 
(e.g., shared mobility infrastructure) not being implemented. 

To overcome these drawbacks, the induced demand module implicitly accounts for these alternatives (departure 
time shifts, shifts in activity and activity locations, etc.)  by creating a feedback loop to the demand side, and 
calibrate this feedback loop based on elasticity estimates that can be found in literature. This approach should be 
contrasted to activity-based models that can inherently account for such variability but are much more intensive 
on the computational and data-side. 

4.1.1.2. Literature review 

The importance and magnitude of demand elasticities—quantifying the relative demand change given the relative 
change of a variable—in transport systems has long been recognized in literature. A high-level overview of 
economic demand elasticities is given by Lee, Klein and Camus (1999). It gives a good description of the difference 
between short- and long-term demand changes. Litman (2017) gives a clear overview concerning generated traffic 
and how to assess its impact. Geilenkirchen et al. (2010) reviews price elasticities on the transport market and 
finds that the price-sensitivity for public transport is typically higher than that for car usage. Examples on latent 
demand upon changes in highway road capacity can be found in van der Loop, van der Waard, and van Mourik 
(2014). Finally, Williams and Yamashita (1992) investigate the effect of (not) accounting for elastic demand on the 
user benefits from highway capacity expansions. 

In traffic models, route choice and sometimes, modal choices, are already accounted (Cascetta, 2009). However, 
typically the total demand for a given OD pair is not influenced. When it comes to incorporating variable demand 
directly into traffic models, the literature is less extensive. We refer to Cantarella et al. (2013) for a detailed 
literature review. A few large and extended traffic models indicate that they account for variable demand. These 
include the Dutch Landelijk Model Systeem (LMS) and the UK’s Transport analysis guidance (TAG). However, 
precise implementation descriptions are often not available or a large amount of data and calibration is needed 
for every model. This makes them expensive in both labour and computational cost, rendering it virtually infeasible 
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for traffic models of smaller urban areas to incorporate variable demand. Here, we propose a pragmatic way to 
include variable demand in those smaller-scale traffic models. 

4.1.1.3. Theoretical framework for variable demand 

The goal is to model variable demand 𝐷 for a given OD pair, given the demand for a base-scenario 𝐷0. The OD 
matrix is assumed to be split according to the time of travel (e.g., peak versus off-peak). The variable demand 𝐷 
is thus the demand for a given OD pair during a given period of the day. Shifts in demand between OD pairs 
(e.g., shopping at another supermarket) and periods of the day (e.g., delaying a trip to off-peak hours) are 
accounted for implicitly by making the separate demands variable, but not establishing an explicit coupling 
between them. Our model focuses on short-term changes in demand, such that shifts between OD pairs and 
periods of the day are expected to be rather limited. As such, it is sufficient to focus on one separate variable 
demand in the OD matrix, without considering interactions with other OD pairs or time periods. Those 
interactions are, however, accounted for during traffic assignment. 

The given or computed demand 𝐷 needs to be distributed over the set of available travel options B (modal choice). 
Here we start from the well-established discrete choice framework (Train, 2009), and assume that this choice can 

be described using a logit model. Given the utility 𝑈𝑖 for option 𝑖 ∈ B, its demand 𝐷𝑖 is given by 𝐷𝑖 = 𝑃𝑖𝐷, where 
the share choosing for option 𝑖 is 

 𝑃𝑖 =
e𝑈𝑖

∑ e𝑈𝑗

𝑗∈B

. 

(1) 

 

Note that the utility 𝑈𝑖 is the negative of the cost for option 𝑖. Here, we only account for a single logit level of 
travel modes to choose from. However, the theoretical framework presented here is straightforward to extend to 

multiple nested logit levels, in which case 𝑈𝑖 represents perceived utility for the complete nest 𝑖. 

The distribution of the demand over the different alternatives 𝑖 is fully determined by their utilities, for which we 
assume to have pre-calibrated functional forms. It remains to determine the demand 𝐷, given the demand of a 
base scenario 𝐷0. In the following subsections, estimates of 𝐷 using either a linear model, or a discrete choice 
model are proposed. The calibration of the latter model will be the subject of the next section. All variables 
representing a quantity during the base scenario will be written with a subscript 0. 

4.1.1.3.1. Models for demand elasticity estimation 

4.1.1.3.1.1. Multidimensional linear 

The most straightforward approach is to construct a linear approximation of the 𝐷 in terms of the utilities of the 

alternatives 𝑈𝑖. The first order Taylor expansion around the base scenario—corresponding to base demand 𝐷0 

with base utilities of the alternatives 𝑈0
𝑖— gives 

 𝐷 = 𝐷0 + 𝟏 ·
∂𝐃

∂𝐔
|
𝑇=0

· (𝐔 − 𝐔𝟎) = 𝐷0 + ∑ [∑
∂𝐷𝑗

∂𝑈𝑖

𝑗∈B

]|

𝑇=0
𝑖∈B

(𝑈𝑖 − 𝑈0
𝑖). 

(2) 

 

Here, the demand vector 𝐃 = [𝐷𝑖]𝑖 and utility vector 𝐔 = [𝑈𝑖]𝑖 were introduced, consisting of the the demands 
and utilities for the alternatives 𝑖 ∈ B, respectively. The Jacobian ∂𝐃/ ∂𝐔 appears because the demand of each 

alternative 𝐷𝑖 depends on the utility 𝑈𝑗 of all the possible alternatives 𝑗 ∈ B. The expression 𝑓(𝑥)|𝑇=0 means that 
the function 𝑓 should be evaluated with parameters representative for the base scenario. 
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It is useful to write the new demand as a sum over the demands for the different alternatives 𝐷𝑗 

 𝐷 = ∑𝐷𝑗

𝑗∈B

 with 𝐷𝑗 = 𝐷0
𝑗
+ ∑

∂𝐷𝑗

∂𝑈𝑖
|
𝑇=0𝑖∈B

(𝑈𝑖 − 𝑈0
𝑖). 

(3) 

 

4.1.1.3.1.2. One-dimensional linear 

We assume that the underlying mode-choice model has a logit structure, and that the demand 𝐷 is a function of 

an aggregated utility 𝑈. The latter is defined as the logsum over the utilities of the different alternatives 𝑈𝑖: 

 𝑈 = ln ∑e𝑈𝑖

𝑖∈B

. 

(4) 

 

Although the functional form 𝐷(𝑈) is unknown, it can be approximated around 𝑈 = 𝑈0 through its first order 
Taylor expansion: 

 𝐷 = 𝐷0 + (𝑈 − 𝑈0)
∂𝐷

∂𝑈
|
𝑇=0

. 

(5) 

 

Here, the derivative can further be written as 

 ∂𝐷

∂𝑈
=

∂𝐷/ ∂𝑥

∂𝑈/ ∂𝑥.
  with  

∂𝑈

∂𝑥
=

∑ [e𝑈𝑘 ∂𝑈𝑘

∂𝑥
]𝑘∈B

∑ e𝑈𝑙

𝑙∈B

= ∑ 𝑃𝑘

𝑘∈B

∂𝑈𝑘

∂𝑥
. 

(6) 

 

4.1.1.3.1.3. Logit formulation 

In the logit-based model, an additional choice level is added at the highest level. This higher level can be 
interpreted as the choice to travel or not to travel, with corresponding perceived utilities 𝑈t and 𝑈nt. The relative 
magnitude of these utilities determines which share 𝑃t of a fictitious population 𝑃𝑜𝑝 decides to travel, i.e., the 
demand for the OD pair: 

 𝐷 = 𝑃t𝑃𝑜𝑝 with 𝑃t =
e𝑈t

e𝑈nt
+ e𝑈t . 

(7) 

 

The travel utility will from now on be written as 𝑈 = 𝑈t and the exponential of the utility not to travel as 𝐾 = e𝑈nt
. 

Considering the short-term evaluation period, both the fictitious population 𝑃𝑜𝑝 and the utility not to travel 𝑈nt 
are assumed constant. The base-scenario relation 𝑃𝑜𝑝 = 𝐷0/𝑃0

t  can then be used to write the demand as 

 𝐷 =
𝑃t

𝑃0
t 𝐷0 =

e𝑈

e𝑈0

𝐾 + e𝑈0

𝐾 + e𝑈
𝐷0. 

(8) 

 

The utility to travel 𝑈 and its evaluation for the base-scenario 𝑈0 = 𝑈|𝑇=0 are given by logsums over possible 
travel alternatives. They can be estimated using standard calibration techniques, both for the base and the current 
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scenario. The main challenge that remains, is to get an estimate for 𝐾 = e𝑈nt
, which is defined in terms of the 

utility not to travel. It is a priori unknown and needs to be calibrated. 

4.1.1.3.2. Properties and comparison between the aforementioned models 

The proposed models have their advantages and disadvantages, closely related to their analytical forms. 

The multidimensional linear model can be fine-tuned for a specific scenario. For a choice set B of 𝑛 possible 

alternatives, there are 𝑛2 parameters that can be tuned (∂𝐷𝑗/ ∂𝑈𝑖|
𝑇=0

 for every combination of 𝑖, 𝑗 ∈ B). This 

great adaptability may become a burden to calibrate when the set of alternatives is large. The multidimensional 
linear model is simple to analyse and it is easy to understand what happens in the model, being advantageous 

when unexpected behaviour is displayed. However, the linearity in the utilities of the alternatives 𝑈𝑖 severely 
limits the accurateness for large utility changes. 

The one-dimensional linear model attempts to naturally incorporate prior knowledge on the logit behaviour for 
the choice model. It remains linear, but in a single variable (the logsum 𝑈) that is itself non-linear. This can lead to 

more natural behaviour, beyond linear in the alternative utilities 𝑈𝑖. However, it also means that the effect of 

relative changes in 𝑈𝑖 on the variable demand 𝐷 is less straightforward to analyse. Results for larger changes in 

𝑈𝑖 might be better due to the incorporation of the underlying model in the logsum 𝑈, yielding changes in 𝐷 that 

are beyond linear in 𝑈𝑖. Having only a single calibration parameter, ∂𝐷/ ∂𝑈|𝑇=0, means that calibration requires 
less effort and data (if good calibration is possible). Care must be taken that the calibrated parameter does not 
contradict the logit choice model. For instance, it is natural to assume that the output of Equation (9) must be 
positive. 

 
∂𝐷

∂𝑈
|
𝑇=0

=
∂𝐷/ ∂𝑥|𝑇=0

∂𝑈/ ∂𝑥|𝑇=0.
 

(9) 

 

Indeed, the overall demand should increase with the logsum utility. ∂𝑈/ ∂𝑥|𝑇=0 is fully determined through the 
logit model at hand, while ∂𝑈/ ∂𝑥|𝑇=0 should be calibrated. One should make sure that the latter two have the 
same sign at all times, to guarantee compatibility between the calibration and the logit model. In experimental 
calculations, the one-dimensional linear model has been found to show unrealistic behaviour, with decreasing 
demands for one alternative when the utility of another alternative decreases. This happens because the share of 
the former alternative does not increase fast enough as compared to the overall decrease of the demand (due to 
the utility decrease of the latter alternative). This type of behaviour is not desirable. 

Overall, the logit-like model has similar advantages as the multidimensional linear formula. However, it does not 
exhibit the described unrealistic behaviour. As such, the logit-like model is the preferred model. In the calibration 

process, it is important to check the condition 𝐾 > 0, which follows immediately from the definition 𝐾 = e𝑈nt
. 

4.1.1.4. Calibration 

In theory, the described variable demand models can be calibrated based on observations on demand and mode 
choice changes with respect to changes in attribute 𝑥. Such data might be obtained through observations, stated- 
or revealed preference surveys. For the linear models, a simple linear regression can suffice, while for the logit 
model, state-of-the-art software packages, e.g., Biogeme (Bierlaire, 2020), can be used. 

However, in practice, it is not always feasible nor desirable to obtain enough data for a data-driven calibration. 
Especially when only ballpark estimates for the variable demand are desired, a less resource-consuming 
estimation method is better. In the next section, we elaborate on one such alternative, based on demand 
elasticities that can often be found in literature. 
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4.1.1.4.1. Elasticity calibration 

Assume that variable 𝑥 is changed, which might influence the utilities 𝑈𝑗 of several alternatives. The 𝑥-elasticity 

of 𝐷𝑗 is commonly defined as 

 𝜂𝑗 =
∂𝐷𝑗/𝐷𝑗

∂𝑥/𝑥
=

∂𝐷𝑗

∂𝑥

𝑥

𝐷𝑗
. 

(10) 

 

It quantifies how a relative change in 𝑥 (e.g., monetary cost or travel time of 𝑖) leads to a change in demand 𝐷𝑗. 

Using 𝐷𝑗 = 𝑃𝑗𝐷, the elasticity can be expressed as 

 𝜂𝑗 =
𝑥

𝐷𝑗

∂(𝑃𝑗𝐷)

∂𝑥
=

𝑥

𝐷𝑗
[𝐷

∂𝑃𝑗

∂𝑥
+ 𝑃𝑗

∂𝐷

∂𝑥
]. 

(11) 

 

The changed demand 𝐷𝑗 can thus stem from either be from the demand for other alternatives 𝐷𝑘, or from the 
part of the population that decides (not) to make the travel OD at the time period under study. 

The different proposed methods can be calibrated based on these expressions and the values for the elasticity, 
often readily available in literature. Care must be taken, however, as elasticities typically strongly depend on the 

present values of demands 𝐷𝑗, 𝑥 and modal split. The calibration parameters for the multi-dimensional linear 
model are given by 

 
∂𝐷𝑗

∂𝑈𝑖
= (

∂𝑈𝑖

∂𝑥
)

−1

[𝜂𝑗

𝐷𝑗

𝑥
− ∑

∂𝐷𝑗

∂𝑈𝑘

𝑘∈B\{𝑖}

∂𝑈𝑘

∂𝑥
]. 

(12) 

 

For the one-dimensional model, the single calibration parameter is 

 ∂𝐷

∂𝑈
=

[
𝐷𝑗

𝑥 𝜂𝑗 − 𝐷
∂𝑃𝑗

∂𝑥 ]

𝑃𝑗 ∂𝑈/ ∂𝑥
, where 

∂𝑈

∂𝑥
= ∑ 𝑃𝑘

𝑘∈B

∂𝑈𝑘

∂𝑥
. 

(13) 

 

Finally, the calibration parameter for the logit formulation is found to be 

 𝐾 = e𝑈0

[
 
 
 ∑ 𝑃0

𝑘
𝑘

d𝑈𝑘

d𝑥 |
𝑇=0

d𝑈𝑗

d𝑥 |
𝑇=0

−
𝜂𝑗

𝑥0

− 1

]
 
 
 

. 

(14) 

 

Each of these calibration parameters needs to be evaluated for the base-scenario. Detailed derivations can be 
found in the appendix. 
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4.1.1.5. Proof of concept 

In this proof of concept, the use of the three different models proposed above is demonstrated on a simple 
scenario. Consider a single OD pair with two options to make the travel: option 𝐴 (e.g., by car) or option 𝐵 (e.g., by 

bus). In the base scenario, the overall demand is 𝐷0 = 1000, with shares 𝑃0
𝐴 = 0.7 and 𝑃0

𝐵 = 0.3. The utility of 
alternative 𝐴 is assumed constant, while the utility of alternative 𝐵 is 𝑈𝐵(𝑥) = −1 − 0.005𝑥, where 𝑥 is a cost 
that may vary. For the base scenario, the cost is taken to be 𝑥0 = 100. The shares of the alternatives and the base-
utility of alternative 𝐵 fixes the utility of alternative 𝐴. The direct cost elasticity for 𝐵 and cross-elasticity for 𝐴 are 
taken as 𝜂𝐵 = −0.4 and 𝜂𝐴 = 0.05. Finally, 𝜆 is set to 1. 

The predictions of the three different models for the total variable demand, and how modes 𝐴 and 𝐵 contribute 
to it, are shown in Figure 4 for costs 𝑥 ranging from 0 to 300. For the one-dimensional linear model and the logit-
like model, calibration was done once using the direct elasticity 𝜂𝐵. For the multidimensional linear model, the 
constantly decreasing 𝐷 leads to decreasing 𝐷𝐴 for large 𝑥. This was to be expected, as this model is only valid in 
a small range around 𝑥0. In the specific scenario considered here, the one-dimensional linear model and the logit-
like model show very similar results. Both using the direct elasticity and the cross-elasticity yields plausible results. 
The total demand 𝐷 decreases with increasing cost of alternative 𝐵. The decrease flattens off as the share of 
alternative 𝐵 is reduced. Some travellers that chose alternative 𝐵 before switch to alternative 𝐴 when the cost of 
𝐵 is increased. This leads to an increased demand for 𝐴. The change of 𝐷𝐵 is partially compensated by an opposed 
change in 𝐷𝐴, leading to a milder overall demand 𝐷 change. 

 

Figure 4. Results for proof of concept, using three different models. 

4.1.1.6. Application within MOMENTUM 

The logit-based induced demand model will be demonstrated in the case study of Leuven. 

4.1.2. Demand estimation for a roundtrip station-based car-sharing system 

4.1.2.1. Motivation and objective 

Car-sharing systems could be classified as one-way and round-trip systems. While the former can be further 
divided into free-floating and station-based systems, the latter is a station-based system. In certain cities (e.g., 
Regensburg), a round-trip station-based system is implemented to complement public transport, by designing the 
car-sharing business model to focus on serving special trips (e.g., trips to furniture stores). In such cases, the 
conventional public transport system is meant to cover the regular trips like commuting, and the car-sharing 
system is meant to cover the special trips, thereby reducing the necessity for car-ownership. 

Many European cities, especially small and medium sized cities, continue to use the traditional strategic 4-step 
modelling approach. The OD matrices from these models, usually, do not adequately cover the demand stratum 
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(i.e., special trips) of the aforementioned round-trip station-based car-sharing systems. Furthermore, when car-
sharing system is small, the modal split for them is very less (< 50 trips per day), making their use a very rare event, 
thereby resulting in a situation where it is not possible to account them through the traditional mode choice 
models.   

Therefore, the demand has to be additionally estimated using an external approach. Besides demand, it is also 
required to profile the users of such a system, so that the demand can be linked to individuals. The development 
of models for these two (i.e., aggregate demand and users) is dealt in this section. Since the demand corresponding 
to the system is an addition to the trips in the existing OD matrices, the approach mentioned here is included as 
part of the induced demand module. 

4.1.2.2. Data sources utilised for model estimation 

This analysis is based on the data collected on car-sharing system from Regensburg. The data sources that are 
available and used in this analysis include station locations, car-sharing system operator data and a household 
mobility survey.  

The operator data consists of information related to trips carried out between November 2016 to November 2019. 
The data includes details such as booking start and end date, booking start and end time, pick up and return station 
(same value because of round-trip system), vehicle make and model, distance travelled during the booking. A total 
of 8,567 trips are recorded in the dataset, which will be used to estimate the demand for the car-sharing system.  

The survey was conducted between February 2018 and January 2019, and 2,501 individuals from 1,116 
households participated in the survey. The survey contains a question related to frequency of use of the car-
sharing system, with the following possible answers: daily or almost daily, 3 to 4 days per week, 1 to 2 days per 
week, 1 to 3 days per month, 1 or 2 days per quarter, rare and never. This frequency variable is used to obtain a 
profile of the car-sharing users. 

4.1.2.3. Methodology 

The aim is to develop a data-driven approach for estimating the demand and profile the users of the car-sharing 
system. This approach uses a multi-method framework, combining a multinomial logit model to find the users, 
and regression models to estimate the number of trips per day and number of trips per station per day, as shown 
in Figure 5. The decision to keep an independent variable in the model is based on the p-value (significance level 
of 0.10) of the corresponding variable, and improvement in the statistical parameters R2 (for linear regression), 
log-likelihood (for multinomial logit), and AIC and BIC (for Dirichlet regression). Models are developed in a stepwise 
fashion, first backward (from saturated models), where only variables of high significance are kept, then forward 
(from empty models), where significant variables are added one after the other. 

The dependent variables for the model on number of trips per day and number of trips per station per day are 
constructed by aggregating the individual trips from the operator data. The dependent variable for the 
multinomial model is the frequency variable from the household survey. It is to be noted that the frequency 
categories “Daily or almost daily” and “3 to 4 days per week” have 0 and 1 samples, and hence, they are discarded 
for the analysis (since a model estimation is not possible). Furthermore, the categories "1-3 days/Month" and "1-
2 days Week" are grouped together as “medium frequency users” and the categories "1-2 days/Quarterly" and 
"rare" as "low frequency users". 
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Figure 5. Demand modelling for roundtrip station-based car-sharing system 

4.1.2.4. Analysis results 

4.1.2.4.1. Linear regression model 

The objective behind this model is to estimate the daily demand for the whole car-sharing system. The model is 
estimated in R using the base function lm(). The decision to include an independent variable in the model is based 
on the p-value (significance level of 0.10) of the variable, and improvement in the statistical parameter (adjusted) 
R2. The specification of the final model is as follows: 

 
TotalDemand = Intercept + StationCount + isFriday + isSaturday + isSunday + isFebruary + 
isInMarchOrAprilOrMay + isInJuly 

(15) 

 

The estimates of the regression model and their interpretation are shown in Table 1. 

Variable Estim. S.E. t-stat Interpretation 

StationCount  1.82 0.03  55.78 
For every new station introduced (with 1 or 2 vehicles), 
on average, the demand increases by 1.82. 

isFriday  0.56 0.22  2.55 Highest demand during Friday 

isSaturday -0.46 0.22 -2.11 Lesser demand during Saturday 

isSunday -2.58 0.22 -11.87 Lowest demand during Sunday 

isFebruary  1.23 0.29  4.32 Higher demand during February 

isInMarch/April/ 
May 

 1.52 0.18  8.52 Highest demand during the months March to May 

isJuly  0.79 0.27  2.90 Higher demand during July 

Intercept 0.91 0.17  5.23 - 

Adjusted R2: 0.75 

Table 1. Estimation result – Total demand model for roundtrip station-based car-sharing system 
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4.1.2.4.2. Dirichlet regression model 

This model is developed to divide the daily demand (estimated through the linear regression model) to the eight 
car-sharing stations in Regensburg city (i.e., this model finds the shares for individual stations). The model is based 
on multivariate Dirichlet distribution and is estimated in R using the package ‘DirichletReg’. The decision to include 
an independent variable in the model is based on the p-value (significance level of 0.10) of the variable, and 
improvement in the statistical parameters AIC and BIC. The final model specification is as follows: 

𝐵𝑢𝑟𝑔𝑤𝑒𝑖𝑛𝑡𝑖𝑛𝑔 (𝐵)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝑆𝑢𝑛𝑑𝑎𝑦 
𝐶𝑎𝑛𝑑𝑖𝑠 (𝐶)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝑀𝑜𝑛𝑑𝑎𝑦 +  𝑖𝑠𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦  
𝐷𝑎𝑐ℎ𝑎𝑢𝑝𝑙𝑎𝑡𝑧 (𝐷)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝐹𝑟𝑖𝑑𝑎𝑦  
𝐾𝑜𝑒𝑛𝑖𝑔𝑠𝑤𝑖𝑒𝑠𝑒𝑛 (𝐾)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) 
𝐿𝑎𝑛𝑑𝑟𝑎𝑡𝑠𝑎𝑚𝑡 (𝐿)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦  
𝑃𝑒𝑡𝑒𝑟𝑠𝑤𝑒𝑔 (𝑃)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 
𝑆𝑡𝑎𝑑𝑡𝑎𝑚ℎ𝑜𝑓 (𝑆)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) +  𝑖𝑠𝑇𝑢𝑒𝑠𝑑𝑎𝑦 +  𝑖𝑠𝑆𝑢𝑛𝑑𝑎𝑦 
𝑇𝑒𝑐ℎ𝑏𝑎𝑠𝑒 (𝑇)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑙𝑜𝑔(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑) 

(16) 

The estimates of the regression model and their interpretation are shown in Table 2. 

Variable Estim. S.E. z-val Interpretation 

TotalDemand (B)  2.85  0.59  4.84 

As the penetration of the car-sharing system 
increases, certain stations attract more customers, 
e.g., there is a higher share for Candis, when the total 
demand increases 

TotalDemand (C)  3.10  0.38  8.10 

TotalDemand (D)  2.07  0.38  5.40 

TotalDemand (K)  2.37  0.41  5.78 

TotalDemand (L)  1.97  0.32  6.11 

TotalDemand (P)  2.77  0.36  7.57 

TotalDemand (S)  1.96  0.43  4.55 

TotalDemand (T)  3.06  0.41  7.37 

isMonday (C) -0.46 0.25 -1.83 Lower share for Candis on Monday 

isTuesday (S)  0.40 0.22  1.85 Higher share for Stadtamhof on Tuesday 

isWednesday (L)  0.38 0.22  1.75 Higher share for Landratsamt on Wednesday 

isWednesday (P)  0.51 0.18  2.88 Higher share for Petersweg on Wednesday 

isFriday (D) -0.35 0.21 -1.67 Lower share for Dachauplatz on Friday 

isFriday (S) 0.33 0.20 -1.63 Higher share for Stadtamhof on Friday 

isSaturday (C)  0.49 0.21  2.32 Higher share for Candis on Saturday 

isSunday (B)  0.79 0.37  2.12 Higher share for Burgweinting on Sunday 

isSunday (S)  0.51 0.29  1.73 Higher share for Stadthamhof on Sunday 

Intercept (B) -7.84 1.65 -4.75 - 

Intercept (C) -7.84 1.06 -7.38 - 

Intercept (D) -4.36 1.05 -4.16 - 
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Intercept (K) -6.01 1.13 -5.31 - 

Intercept (L) -4.73 0.89 -5.33 - 

Intercept (P) -6.39 1.01 -6.32 - 

Intercept (S) -4.43 1.20 -3.70 - 

Intercept (T) -7.92 1.15 -6.90 - 

AIC: -1176; BIC: -1125 

 Table 2. Estimation result – Demand distribution model for roundtrip station-based car-sharing system  

4.1.2.4.3. Logit model 

A multinomial logit model is developed to estimate the car-sharing use frequency (i.e., medium frequency, low 
frequency and never) for individuals. The decision to include an independent variable in the model is based on the 
p-value (significance level of 0.10) of the variable and improvement in the log-likelihood value (likelihood ratio 
test). The final model specification is as follows: 

𝑀𝑒𝑑𝑖𝑢𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑀)
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐴𝑔𝑒 +  𝑖𝑠𝑆𝑡𝑢𝑑𝑒𝑛𝑡 +  𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 +  𝑖𝑠𝐻𝑎𝑙𝑓𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 
+  𝑖𝑠𝐵𝑖𝑐𝑦𝑐𝑙𝑒𝐻𝑖𝑔ℎ𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑈𝑠𝑒𝑟 +  𝑖𝑠𝑃𝑇𝐻𝑖𝑔ℎ𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑈𝑠𝑒𝑟 
+  𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝐼𝑛𝑍𝑜𝑛𝑒  

𝐿𝑜𝑤𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐿)  
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐴𝑔𝑒 +  𝑖𝑠𝑆𝑡𝑢𝑑𝑒𝑛𝑡 +  𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 +  𝑖𝑠𝐻𝑎𝑙𝑓𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 
+  ℎ𝑎𝑠𝐿𝑜𝑤𝐼𝑛𝑐𝑜𝑚𝑒 +  ℎ𝑎𝑠𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝐷𝑒𝑔𝑟𝑒𝑒 +  𝐻𝐻𝐵𝑖𝑐𝑦𝑐𝑙𝑒𝑠 +   𝐻𝐻𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐶𝑎𝑟𝑠 
+  𝑖𝑠𝐵𝑖𝑐𝑦𝑐𝑙𝑒𝑀𝑒𝑑𝑖𝑢𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑈𝑠𝑒𝑟 +  𝑖𝑠𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐶𝑎𝑟𝐿𝑜𝑤𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑈𝑠𝑒𝑟 
+  𝑖𝑠𝑃𝑇𝐴𝑛𝑑𝐶𝑎𝑟𝑈𝑠𝑒𝑟 +  𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝐼𝑛𝑍𝑜𝑛𝑒 

𝑁𝑒𝑣𝑒𝑟 =  0 (𝑏𝑎𝑠𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 

(17) 

The estimation result is shown in Table 3. As shown in the table, the frequency of use is influenced by the following 
factors: number of household bikes and cars, income, education, age, employment, frequency of use of 
conventional modes and the number of sharing vehicles in the district.  

Variable Estim S.E. z-val Interpretation 

Age (both M & L) -0.04 0.01 -4.49 
With increasing age, there is an increasing 
probability to not use the car-sharing system 

isStudent (M)  1.78 0.48  3.67 Students have high probability for medium and low 
frequency use, when compared to the category 
‘Never’ isStudent (L)  2.09 0.39  5.30 

isFullyEmployed (M)  1.57 0.48  3.30 Fully employed individuals (≥ 35 hr/week) are more 
probable to use the car-sharing system isFullyEmployed (L)  1.65 0.39  4.19 

isHalfEmployed (M)  1.97 0.55  3.57 Individuals with half employment (b/w 18 to 34 
hr/week) have a higher likelihood to use the car-
sharing system isHalfEmployed (L)  1.57 0.47  3.33 

hasLowIncome (L)  0.72 0.37  1.94 

Low-income population (< €1500/month) is more 
likely to be a low frequency user. The low-income 
population may not have the capacity to own a 
private car and may be using the car-sharing system 
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for special trips for which PT is not suitable, e.g., 
transporting goods from furniture stores. This could 
imply that the car-sharing enhances transport 
equity. 

hasUniversity 
Degree (L) 

 0.59 0.27  2.20 
Possession of university degree enhances the 
chances of using the car-sharing system. 

HHBicycles (L)  0.17 0.05  3.35 

With an increase in the number of bicycles in the 
household, there is an increased probability to use 
the car-sharing system at low frequency. This could 
imply that the car-sharing system complements the 
active mode users.  

HHPrivateCars (L) -0.29 0.17 -1.75 
Lower likelihood to use car-sharing system, if there 
is an increase in the number of private cars in the 
household. 

isBicycleHigh 
FrequencyUser (M) 

 1.60 0.38  4.23 
A higher probability to use the car-sharing system, if 
an individual is a bicycle user (High frequency: at 
least for 3 days a week; Medium Frequency: once a 
week or at least once a month). This could also imply 
that the car-sharing system complements active 
mode users. 

isBicycleMedium 
FrequencyUser (L) 

 0.53 0.24 2.23 

isPTHighFrequency 
User (M) 

 1.10 0.36 3.10 

Similar interpretation to that of ‘isBicycleHigh 
FrequencyUser’, implying that the car-sharing 
system complements PT users, i.e., the car-sharing 
system is used for trips for which PT is not suitable. 

isPrivateCarLow 
FrequencyUser (L) 

0.65 0.33 1.99 

Individuals who use their private cars at low 
frequency (once a quarter or year) are more 
probable to use the car-sharing system, which could 
mean that it is possible to reduce car-ownership in 
the city in the long run. 

isPTAndCarUser (L) -0.77 0.35 -2.18 

Lower likelihood to use the car-sharing system, when 
an individual uses both PT and private for at least 
once a week. Following could be the reason: PT is 
used whenever possible, and private car when PT is 
not adequate, i.e., there exists a group who do not 
use car-sharing, but their private cars, when PT is not 
suitable for their trips. 

numberOfSharing 
VehiclesInZone (M) 

0.27 0.08 3.28 More the number of car-sharing vehicles, higher is 
the likelihood to use the system. Thus, introduction 
of new car-sharing vehicles will have a positive 
effect. 

numberOfSharing 
VehiclesInZone (L) 

0.14 0.06 2.21 

Intercept (M) -5.65 0.56 -10.16 - 

Intercept (L) -4.01 0.49 -8.25 - 

McFadden R2: 0.16; Log-likelihood: -522.1 

Table 3. Estimation Result – Use frequency model for roundtrip station-based car-sharing system 
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4.1.2.4.4. Trip characteristics 

This section is aimed at showing the distribution of travel distances of the trips from the different car-sharing 
stations in Regensburg. Figure 6 shows that the distribution varies between the stations. These distributions will 
be used as basis to assign trip distance and activity location for the sharing trips. 

 

Figure 6. Trip length distribution for roundtrip station-based car-sharing system in Regensburg 

4.1.2.5. Application within MOMENTUM 

Within MOMENTUM, the aforementioned car-sharing system is unique to the city of Regensburg, and hence, the 
approach mentioned in this section is developed from Regensburg data and also will be applied to Regensburg 
case study. The outputs from the regression models will be utilised to estimate the demand. The outputs from the 
multinomial logit model will be used to assign car-sharing use frequency to a synthetic population and then the 
individuals will be randomly sampled based on the assigned frequency and linked to the demand estimated by the 
regression models. 

It is to be noted that a user would have visited an activity location such as a furniture store during the booking 
period, although the user picks up and leaves the vehicle at the same station. Such an activity location needs to 
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be found to split the roundtrip into two individual trips. Therefore, the distribution of the trip distance obtained 
from the operator data will be used to assign the activity zone (i.e., the sampled distance and the distance between 
the origin station zone and other zones will be compared and the assignment will be made). Furthermore, since 
the time at the activity location is unknown and the travel speed for deriving such a time from the total booking 
duration is also unknown, a random selection from an interval of 30 minutes to 2 hours will be used as the time 
at the activity location. 

4.2. OD module - OD matrix type classification and selection for typical 
days 

4.2.1. Motivation and objectives 

General mobility within a city is typically characterised through an OD matrix. For a given zoning system of study 
area, it indicates the number of trips by mode between OD pairs in the network. A static OD matrix is typically 
defined for a single day for specific time period and mode, and is usually estimated by means of household surveys, 
traffic counts or modern emerging data sources such as mobile phone records.  

One of the issues regarding OD matrix estimation is that it typically relies on data that is necessarily collected in 
the past and, therefore, OD matrix information for upcoming dates under study can only be obtained through the 
use of simulation models or a combination of past matrices of similar days, usually hand-picked based on 
experience. The closer the structure and volumes of the selected matrix are to the traffic conditions of the day 
under study, the more reliable the results from the models will be. The traffic conditions of a specific day may 
depend on a variety of factors, such as the day of the week the weather, the existence of events, etc.        

This section presents a methodology for OD matrix selection based on machine learning that allows to 
automatically select a representative matrix for a given day in the near future according to different variables (day 
of week, weather, etc.). Figure 7 shows the proposed workflow. 

 

Figure 7. Workflow of the proposed classification model 

As the figure shows, the initial step consists of the clustering of existing OD matrices according to their similarities 
in terms of trip volume and trip-zone structures. For this purpose, the similarity metric developed in previous 
stages of the project will be used (for further detail on the similarity measure, the reader might refer to Section 2 
of Deliverable 3.3: “Methodologies and Algorithms for Mobility Data Analysis” of the present project). For this 
clustering, due to its easiness of interpretation, the hierarchical clustering will be used. The matrices assigned to 
each cluster will be aggregated by means of averaging into “prototype matrices”, which correspond to the 
approximated matrix that corresponds to each cluster.  

Then, using the clusters, a classification machine learning algorithm has been developed for the prediction of the 
cluster assigned to a given OD matrix using as input features variables related with the date of the matrix, weather 
or potential events. In this way, the classifier will predict to which cluster, the study day corresponds to and, 
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consequently, assign to it the most probable matrix or average matrix, built as the average of all the matrices 
belonging to the same cluster. 

In the context of the MOMETNUM project, beyond the advantages already discussed about having a demand 
matrix as representative of the study day as possible,  a better selection of the representative OD matrix will result 
in a better estimation of the share mobility demand obtained from data based predictive models, which takes as 
input the information of general OD matrices for shared mobility demand estimation. This model is discussed in 
Section 4.4.2. 

The next sections describe in detail the exploration of clustering levels and the classification experiments and 
results. For the development of such models historical OD matrices for Madrid for all the days in October 2018, 
February, April, June, July and October 2019 and February 2020 obtained from mobile phone records were used. 
The matrices correspond to the city of Madrid with a zoning based on the transport zones defined by the Madrid 
transport authority. 

4.2.2. Hierarchical clustering 

The initial step of the proposed method consists of the clustering of a series of historical OD matrices according 
to the similarities observed between them. Such similarities are obtained by applying the similarity metrics 
developed in the context of the project and discussed in Deliverable 3.3: “Methodologies and Algorithms for 
Mobility Data Analysis”.  

In this case, we have used the agglomerative clustering algorithm provided by Scikit-learn (version 0.23.2) in 
Python (version 3.7), to perform hierarchical clustering based on Ward aggregation algorithm. This type of 
clustering initially defines a tree-like structure that hierarchically represents all the distances between elements 
to be clustered, clearly identifying the degree of similarity of each pair of entities (either single elements or already 
clustered groups of elements).  In this tree-like structure, called dendrogram, each element has a horizonal line 
that is connected to others by a vertical line at the point (x-axis value) that corresponds to the actual distance 
between them. 

The number of clusters to be considered is defined by means of a cut-off distance provided to the agglomerative 
clustering algorithm. Every pair of elements whose distance (the vertical line connecting them) is below this cut-
off distance will belong to the same cluster. For the correct determination of such distance, a series of levels has 
been defined according to the complexity and the number of clusters each cut-off distance introduces for the 
matrix dendrogram. Where to fix the cut-off distance is decided in an iterative process where the characteristics 
of the resulting clusters for each cut-off are evaluated. Depending on the problem under study, this evaluation 
can be quantitative using stablished metrics such as the silhouette score or qualitative which is the case of the 
current problem. The following sections provide a descriptive analysis of the clustering schemes for different 
cut-off distances for Madrid for a set of OD matrices calculated with mobile phone data for the months of 
October 2018, February, April, June, July and October 2019 and February 2020.  

4.2.2.1. Level 0 

The Level 0 clustering scheme (a) represents the higher-distance cut-off in the Figure 6 and yields the least clusters 
of all the schemes. Before Level 0, there is just a very big separation between two large groups, which corresponds 
to weekends (top) vs weekdays (bottom). Within Level 0, we can separate those two groups as follows: 

• Weekend group: The top group is formed mainly by weekends and equivalent groups. It is divided into 
three sub-groups: 

o 1. The largest one, at the top of this group (black) contains most Saturdays in the dataset as well 
as Sundays of two months: October 2019 and February 2020. 
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o 2. The middle one (yellow) contains most of the Sundays for all the months prior to October 2019 
within the dataset. 

o 3. The smallest one (pink) corresponds to the four days of Easter in April 2019. 

• Weekday group: The bottom group is composed of the different weekdays in different arrangements. At 
this level there are three main sub-groups: 

o 4. Top sub-group (cyan) contains most weekdays of October 2019 and February 2020. 
Aggregation inside is observed by weekdays, except for Fridays, that are grouped together and 
equidistant to the other groups. 

o 5. Middle sub-group (red) corresponds to the 5 weekdays of the last week of February 2020, 
which is possibly separated due to the limitations of mobility (mainly tele-work in many large 
companies) that arose due to the COVID-19 pandemic. 

o 6. Bottom sub-group (green) corresponds to all the weekdays from remaining months (except 
October 2019 and February 2020). There are interesting inner patterns that will be explored at 
deeper levels. 

 

 

Figure 8. Dendrogram coloured a) according to Level 0 clusters, b) according to Level 1 clusters, c) at the Level 2 cut-off distance 
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4.2.2.2. Level 1 

At this Level 1 (Figure 8b) the use of a smaller cut-off distance yields more clusters (9) that appear when further 
partitioning pre-existing groups at Level 0. The most relevant new groups are the following ones: 

• Sub-groups derived from group 1: Initially, group 1 contained together Saturdays and Sundays of October 
2019 and February 2020 with the rest of Saturdays in the dataset. At this level, the next sub-groups have 
appeared: 

o 1.1. The small top subgroup (cyan) is a very small day containing two outliers and a Saturday 
(which is an outlier itself, as it is paired with weird days). These days correspond to those outliers 
observed at Level 0: 

• February 19th, 2019 (Tue): No rain, some wind gusts (not very powerful). A quick 
Google search suggests there is no remarkable event. 

• October 22nd, 2018 (Mon): Again, no rain, some wind gusts and nothing on the news. 
• February 29th, 2020 (Sat): can be explained due to the impact of COVID-19 caution 

adopted by citizens. 
o 1.2 The middle subgroup (red) now includes all Saturdays and Sundays of October 2019 and 

February 2020 in two clearly separated sub-groups. 
o 1.3 The bottom subgroup (green) includes all Saturdays of the remaining months along with a 

single Sunday: 
• October 28th, 2018 (Sun). The most remarkable event is a couple of races that could 

be relevant for the separation. 

• Sub-groups derived from cluster 6: 
o 6.1. The top sub-group (red) contains most days from October, February, and June 2019 and 

almost half of April’s. There are two outliers, October 31st, 2019, and July 2nd, 2019. 
o 6.2. The bottom sub-group (green) contains most days of July 2019 as well as the other half of 

April’s. In this case, the days that do not match this pattern are the following ones: 
• 7th, 26th, 27th, and 28th, June 2019 
• 1st, 8th, and 22nd, February 2019. 

4.2.2.3. Level 2 

At Level 2 (Figure 8c) the larger cut-off distance makes the dendrogram be further split in up to 14 clusters. The 
new clusters are mainly new sub-groups detailed below: 

• Group 1.1 is separated into two minimal sub-groups: 
o 1.1.1. Top sub-group (red): This group comprises a Monday and a Tuesday well separated in time 

that seem to be strange, as they are within reach of weekends. 
o 1.1.2. Bottom sub-group (blue): This group is just February 29th, 2020, which may be significantly 

different to other Saturdays due to COVID-19 pandemic effects. Even though at this point there 
were no public health measures in place yet, many large private companies had already put in 
place tele-work measures to ensure business continuity. 

• Group 1.2 has been separated into two sub-groups: 
o 1.2.1. Sub-group 1.2.1 (green) contains all Sundays from October 2019 and February 2020. 
o 1.2.2. Sub-group 1.2.2 (black) contains all Saturdays from October 2019 and February 2020. 

• Group 2 is now separated into two different sub-groups: 
o 2.1 Top sub-group (purple) comprises the Sundays of February 2019, July 2019 and half of April’s. 

There is also one day from October 2018 and a Saturday, July 27th, when it is possible that 
mobility is more alike to regular Sundays due to the holiday period. 

o 2.2 Middle sub-group (cyan) Comprises only two Sundays July 21st and July 28th different than 
the rest, possibly due to changes in mobility because of the holiday season. 
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o 2.3 Bottom sub-group (red) contains Sundays from June 2019 and October 2018. Also contains a 
Friday (October 12th, 2018) and a Saturday (October 13th, 2018) that correspond to Spanish 
national festivity “Día del Pilar” and the day after. 

• Group 3 has been split into two: 
o 3.1 Top sub-group (green) Contains the days of the weekend of 20th April 2019 (Sunday and 

Saturday) and Thursday 18th April, which are the holiday days of Easter) 
o 3.2 Bottom sub-group (blue) Corresponds to Friday 19th April 2019 alone which is part of Easter 

as well, but gets separated. 

• Group 4 is now separated in two sub-groups: 
o 4.1. The top sub-group (black) is composed by all weekdays of October 2019 and one and a half 

weeks of February 2020. In general, contiguous, or nearly contiguous days appear closest in terms 
of distance. 

o 4.2. The bottom sub-group (yellow) is uniquely composed by February days and precisely the 
standard working days (Tuesday, Wednesday, and Thursday) of two weeks (11th-13th and 18th-
20th) along with a Friday (21st) and a Monday (17th). 

• Group 6.1 is now separated into two different sub-groups: 
o 6.1.1. Top sub-group (cyan) is composed by weekdays from February and June 2019 mainly, as 

well as 9 days of April 2019. There are considerably less Fridays in general. The inner organization 
is mainly by day of week (Mondays tend to get together with Mondays, etc.). 

o 6.1.2 Bottom sub-group (red) contains mainly October 2018 dates. Internally, there is a difference 
between October 2018 dates and the rest, which correspond to days in October and February 
2019. 

4.2.2.4. Summary on hierarchical based clustering of OD matrices 

Several levels of clustering based on cut-off distances have been explored. The results show different levels of 
disaggregation according to the level selected and most of them seem to be reasonably explained taking into 
account information about each OD matrix date and festivity. In sum, any of the levels described could be used as 
the building base of the matrix type classification model. 

Nevertheless, there are two relevant observations from the clustering data. The first one is that October 2019 and 
February 2020 seem to be significantly different to the rest of OD matrices and it is worth noting that the algorithm 
in charge of generating OD matrices experienced changes for those periods. In this light, it is possible that the 
comparison between these two and the rest has methodological differences and thus, impact the final results of 
the classification. For that purpose, the classification model will be trained without these months’ data. 

In addition, it can be clearly observed that Level 2 could be the most appropriate Level to perform classification, 
as it provides clusters which differences cannot be only explained by direct hypotheses like calendar days and, 
therefore, interesting for the study of alternative features. However, the number of samples available for some 
clusters is too low, which could negatively impact on the quality of representative matrices (the resulting average 
matrices for each cluster). In this light, Level 1 is selected, as it provides a disaggregated enough, is able to split 
dates beyond the trivial weekday/season rules while keeping the number of cluster members reasonably high. 

4.2.3. OD matrix clustering based on graph embeddings 

4.2.3.1. Objective 

The aim of this section is to present a novel OD matrix clustering methodology based on Graph Embedding 
techniques (Goyal and Ferrara, 2018). This methodology also makes use of the structural similarity measure of OD 
matrices developed in MOMENTUM, but it is mainly based on two concepts: a) the creation of a similarity graph 
for the set of OD matrices to be compared and b) the application of Graph Embedding techniques. In the following 
subsections, we will present the proposed methodology and the results obtained. 
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4.2.3.2. Methodology 

The proposed clustering methodology is based on the concept of Graph Embedding (Goyal and Ferrara, 2018). 
The aim of this type of techniques is to find a representation of nodes, arcs, and their features in the form of a 
feature vector that maintains the properties of the graph structure and information (e.g., adjacent/non-adjacent 
nodes have close/far representations of each other, respectively). 

In our case, the graph 𝐺 = (𝑉, 𝐸) is defined by a set of nodes or vertices V and a set of edges E. The set of vertices 
is defined as 𝑉 = {𝑚 ∈ 𝑀}, where M is the set of OD matrices to be clustered. Thus, each node in the graph is an 

OD matrix. The set 𝐸 = {(𝑚𝑖 , 𝑚𝑗) | 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑚𝑖, 𝑚𝑗) >  𝜇,𝑚𝑖 ∈ 𝑀,𝑚𝑗 ∈ 𝑀}, corresponds to pairs of OD 

matrices whose similarity exceeds a certain threshold 𝜇. That is, in the graph, two OD matrices will be connected 
by an edge if they are similar enough. Figure 9 shows an example of such a graph. In this case, the colour of the 
nodes corresponds to the day of the week. 

 

Figure 9. Example of similarity graph for OD matrices. The colour of the nodes corresponds to the days of the week 

Once the graph has been defined, the next step in the proposed methodology consists of applying the Graph 
Embedding method. Although there are several proposed approaches in literature, for this task we have used 
Node2Vec (Grover and Leskovec, 2016), one of the best known and most widely used methods for this purpose 
both in the scientific literature and in practice. Specifically, this method learns low dimensional representations 
(embeddings) of the nodes of a graph in a way that preserves the neighbourhood structure (e.g., adjacent nodes) 
and different equivalences as homophily or structural equivalence. Thus, the result of this stage is a set of vectorial 
representations of the OD matrices composing the graph 𝑅 =  {𝑋𝑘  | 𝑋𝑘 ∈ ℝ𝑛}. 
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Finally, the last step consists of applying a clustering method on the vector representation of the OD matrices 
using Euclidean distance to obtain the different clusters of these matrices. In this case, we opted for hierarchical 
clustering because of its simplicity in defining different levels of grouping. 

4.2.3.3. Results of the clustering based on graph embeddings 

In this section, we are going to show the result of the clustering of the OD-articles using Graph Embeddings. The 
similarity measure is also the one proposed in D3.3, and specifically, the so-called Approach 1, described in Section 
2 of Deliverable D3.3 "Methodologies and Algorithms for Mobility Data Analysis". The threshold for determining 
when an edge is established between two OD matrices was set at the 70th percentile, i.e., only those OD matrices 
whose similarity is within the top 30% of the most similar ones are those connected with an edge. The resulting 
graph is shown in Figure 10. For the sake of understanding, the colours of the nodes correspond to the months 
analysed. 

 

Figure 10. Graph representation of similarities between OD Matrices according to Approach 1. The colour of the nodes corresponds 
to the month 

The parameterisation used to apply Node2Vec is shown in Table 4. As indicated in the methodology section, the 
result of embedding is a vector representation for each OD matrix (in this case of dimension 128). Hierarchical 
clustering has been applied to this representation using the Ward method based on the Euclidean distance 
between these representations in order to obtain the different OD matrix clusters. 

Regarding the data used and the clustering levels defined, we follow the same approach as the one used for matrix 
clustering based on the similarity measure. In the following sections, we show the resulting clusters according to 
different aggregation levels. 
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Parameter Value 

p 1 

q 20 

number of random walks 500 

random walk length 10 

window size 10 

feature vector dimension 128 

Table 4. Parametrization of Node2Vec algorithm 

4.2.3.3.1. Level 0 

 

Figure 11. Phylogram for clusters of OD Matrices in Level 0 

This Level 0 represents a higher level of clustering where the cut-off threshold is set at a high value, and which is 
shown in Figure 11. In this case, we can observe three large clusters before the Level 0 separation that would 
correspond to the group of weekends, and two groups of weekdays: one with the months of October 2018, and 
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February, April, June, and July 2019; and another with October 2019 and February 2020. Within Level 0, we can 
separate these three groups as follows: 

• Weekend group: as in the previous clustering (see Section 4.2.2), this group consists mainly of weekends 
or equivalent days (e.g., holidays). It is further divided into groups, similar to the way the three global 
clusters are divided: 

o 1. Saturdays, Sundays, and holidays previous to October 2019. 
o 2. Saturdays and Sundays from October 2019. 
o 3. Saturdays and Sundays from February 2020. 

• Weekday group previous to October 2019: this group includes the weekdays of the first five months 
studied, which are condensed into a single cluster. 

o 4. Weekdays previous to October 2019. 

• Weekday group from October 2019: This last block includes the weekdays of the months of October 2019 
and February 2020, each with its respective cluster: 

o 5. Weekdays from October 2019. 
o 6. Weekdays from February 2020. 

4.2.3.3.2. Level 1 

 

Figure 12. Phylogram for clusters of OD Matrices in Level 1 
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As in clustering presented in Section 4.2.2, by setting a lower threshold for determining clusters, new partitions 
appear in some of the groups defined at Level 0: 

• Sub-groups derived from cluster 1 “Weekends previous to October 2019”. With this new division, cluster 
1 is further split into two sub-groups: 

o 1.1. Weekends and holidays previous to July 2019 (except Easter Holidays 2019). This group 
includes Saturdays and Sundays in the months prior to July 2019 with the exception of the 
weekend relating to the Easter holidays in 2019. In addition to this, there are other relevant 
exceptions: 

• October 12th, 2019 (Friday): This day corresponds to the Spanish national festivity 
“Día del Pilar”. 

• April 15-17 (Monday, Tuesday, and Wednesday): They are the first three days of 
Easter Week 2019. Although these three days are working days, educational facilities 
are closed for holidays that week, so students and a high percentage of workers are 
usually on vacation on these three days. 

o 1.2. Weekends from July 2019 + Easter Holidays 2019. This cluster includes the weekends of 
holiday periods such as July and the four days of Easter in 2019 when a high percentage of locals 
travel outside the Region of Madrid. 

• Sub-groups derived from cluster 4 “Weekdays previous to October 2019“. Similar to the previous one, 
cluster 4 is divided into two groups, although in this case with a more balanced distribution. The seasons 
of the year seem to have some influence on this division as we explain below: 

o 4.1 Weekdays from Spring-Summer. This sub-group includes all weekdays in July 2019, the first 
three weeks of June 2019, the first two weeks of April 2019, and the first week of February 2019. 
Below we analyse the reasons why the above-mentioned days in April and February are included 
in this sub-group: 

• First two weeks of April 2019: These first two weeks are characterized by stable 
weather (no rain) and mild/cool temperatures (between 15ºC and 20ºC maximum), 
so it is reasonable that they fall into this group. 

• First week of February 2019: this week is also characterized by stable weather (no 
rain) and slightly cool temperatures (maxima between 13ºC and 16ºC). In any case, 
the rest of the weeks of the month have similar weather, so this does not seem to 
be the reason. As can be seen in Figure 12, the graph shows that this week is right 
on the borderline with the month of July. For this reason, this subset of OD matrices 
will be probably borderline cases, which the clustering algorithm has not grouped 
correctly. 

o 4.2 Weekdays from Autumn-Winter-Spring. This sub-group includes all weekdays in October 
2018, the last three weeks of February 2019, the last week of April 2019 and the last week of 
June 2019. Below we analyse the reasons why the above-mentioned days in April and June 2019 
are included in this sub-group: 

•  Last week of April 2019 (April 22-26, April 29-30): This week is characterized by a 
few days of bad weather, particularly on April 23, 24 and 25, which are rainy days, 
windy and with slightly low temperatures (maxima between 13ºC and 14ºC). This 
adverse weather may be the reason why this last week of April falls into this group. 

• Last week of June 2019. This last week is characterized by quite high temperatures 
(maxima between 32ºC and 40 ºC) which contrast with its inclusion in this group. As 
the first week of February, this is a borderline case that may have been incorrectly 
grouped by the clustering method. 
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4.2.3.3.3. Level 2 

 

Figure 13. Phylogram for clusters of OD Matrices in Level 2 

In this Level 2, we do an even more refined clustering by means of a lower cut-off threshold. In total there are 15 
clusters, which divide the Level 1 clusters as follows: 

• Sub-groups derived from sub-group 1.1. Sub-group 1.1 is divided into the following three sub-groups, 
probably due to climatological reasons: 

o 1.1.1. Weekends and holidays (October 12th) from October 2018. 
o 1.1.2. Weekends from June 2019. 
o 1.2.3. In this case, the group contains all the weekends from February and April 2019, except for 

the Easter holidays, and the three first days of Easter week for the reasons explained above. 

• Sub-groups derived from sub-group 1.2. This sub-group has been separated into the following two sub-
groups, because of the different characteristics of July versus Easter holidays. 

o 1.2.1. Weekends from July 2019. 
o 1.2.2. Easter holidays 2019. 

• Sub-groups derived from cluster 3. In this case, the cluster is also divided into two sub-groups 
corresponding to the first and second half of February 2020. This split is probably due to the effects of the 
COVID-19 pandemic this month, as explained above. 
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o 3.1. Weekends from the first half of February 2020. 
o 3.2. Weekends from the second half of February 2020. 

• Sub-groups derived from sub-group 4.1. This sub-group, which includes the weekdays of part of the 
spring and the summer, now differentiates between the weekdays of July and the rest of the months. This 
behaviour is to be expected as July is a different month in which schools are closed and a significant 
percentage of the inhabitants of this region are on holidays. 

o 4.1.1. Weekdays from July 2019 (except 26, 29, 30 and 31) 
o 4.1.2. This group entails the weekdays from the first three weeks of June 2019, the first two 

weeks of April 2019, the first week of February 2019 and the last four days of July 2019. In this 
case, there are two sub-groups that are borderline cases probably misplaced by the clustering 
algorithm, as we can see in the graph displayed in Figure 13. The last four days from July 2019 it 
is more reasonable to be included in sub-cluster 1.2.1, and the first week of February 2019, in 
cluster 1.2.3. 

• Sub-groups derived from sub-group 4.2. This sub-group, which includes the weekdays in autumn, winter 
and part of spring, has also been subdivided into two sub-groups, which are described below: 

o 4.2.1. Weekdays from the last three weeks of October 2018. 
o 4.2.2. This sub-group comprises the weekdays from the last three weeks of February 2019, the 

last two weeks of April 2019, the first week of October 2018 and the last week of June 2019. 
Here, we can find some interesting peculiarities. As said before, some days of the last two weeks 
of April presented bad weather, so its clustering together with the last three weeks of February 
makes sense. The graph shown in Figure 13 also corroborates this fact. However, the first week 
of October 2018 and the last week of June 2019 form a matrix group that is at the border of 
several clusters. The fact that these two weeks are grouped together is probably due to the good 
weather during the first week of October 2018, with sunny days and maximum temperatures 
between 26ºC and 29ºC. In this case, we also believe that the clustering algorithm has wrongly 
grouped these two weeks together, and it would make more sense for them to be included in 
sub-group 4.1.2. 

• Sub-groups derived from cluster 6. In this last cluster, which contained the weekdays of February 2020, 
two sub-groups have also been generated, which, as in the case of cluster 3, are based on different 
mobility patterns in the last weeks of February due to the outbreak of the COVID-19 pandemic in this 
region. 

o 6.1. Weekdays from the first 10 days of February 2020. 
o 6.2. Weekdays from the last 20 days of February 2020. 

4.2.3.3.4. Clustering summary 

In this section, we have presented a new methodology for OD matrix clustering based on Graph Embeddings. This 
methodology has been tested on the same data as the clustering performed for OD matrix classification in Section 
4.2.2. The analysis of the results has also been based on different levels of aggregation. 

In this analysis, similarities and differences have been observed with the clustering based solely on the similarity 
measure of OD matrices. The main similarities found would be the following: 

• At a higher level, the clustering clearly differentiates between weekdays and weekends. 

• The months of October 2019 and February 2020 show a different behaviour from the rest, which is due 
to the change in the OD matrix generation algorithm mentioned above. 

• Weekdays that are public holidays are grouped with weekends. 

• The weekdays are divided into two large blocks according to the seasons of the year. 
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The main differences are as follows: 

• The clusters provided by this methodology are more legible and natural as they tend to group OD matrices 
close in time. As it could be seen in Figure 11, Figure 12 and Figure 13, they are grouped by weeks in a 
large percentage of cases. 

• In line with the above, we can find fewer outliers in the clusters. Nevertheless, we have been able to 
identify subsets of OD matrices that a priori were not well clustered. However, the fact that they are 
groups of OD matrices and not isolated OD matrices, makes it easier to identify them. 

• No clustering by day of the week is observed for weekends, as was the case with the clustering method 
used in Section 364.2.2. This deserves further study, as it is initially expected that Saturdays and Sundays 
at certain times of the year will resemble each other. 

To summarise, this is a promising matrix clustering methodology since it results in cleaner and more natural 
clusters. However, some of the differences detected, such as the erroneous clustering of certain sets of OD 
matrices or the non-clustering by days of the week, call for further research in the future to better understand 
what the cause of these differences may be. Hence for matrix classification the clusters obtained with the 
hierarchical approximation will be considered. 

4.2.4. OD matrix classification and selection 

Once a valid clustering scheme has been obtained, the aim of this model is to develop a machine learning classifier 
capable of assigning each day of study to a representative matrix group based on calendar-based features. This 
way, the selected OD matrix will be closer to the expected one.  

This section provides an overview of a machine learning classification model based on the decision tree algorithm 
that has been developed using the following months: October 2018, and February, April, June and July 2019; that 
have been assigned a class according to their OD matrix differences in trip volume and structure. For that purpose, 
a set of input features mainly derived from the date of each matrix is used and described in the input features 
section below. 

4.2.4.1. Architecture of the OD matrix classifier 

The proposed classifier system is based on the decision tree classifier algorithm. The decision tree classifier is a 
machine learning algorithm that learns a set of rules based on the input features to hierarchically determine the 
category each data sample belongs to. The decision tree algorithm has a set of hyper-parameters that control the 
shape and complexity of the tree, such as the tree depth or the minimum number of samples to have at each leaf.  

These hyper-parameters are adjusted through a 3-fold cross-validation methodology which consists of trying 
several combinations of hyper-parameters and retaining the best-performing one. Instead of using the entire 
training dataset once for each combination of parameters, it is split in three chunks. For each combination of 
parameters, the model is repeated three times considering as testing data a different chunk each time.  

This way, each hyper-parameter performance is averaged over the three iterations, which provides robustness 
against random sampling biases. At the end, the best combination of hyper-parameters is used with the training 
data to develop the final model that is then validated using a testing data set that has not been used for this 
purpose. 

4.2.4.2. Classifier Input Features 

The decision tree classifier takes as input a set of features that has been derived from variables that are available 
before the date of study. These variables mainly correspond to calendar-based items (day of week, day of year, 
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holidays) and also to predictable or scheduled events (weather or sports events). Table 5 provides a summary of 
the variables introduced in the model. 

Variable name Description 

DoW 
Day of week introduced by means of categorical values activated when the date corresponds 
to that day of the week. Available categories are Monday, weekday, Friday, and Saturday. 

DoY 
Sine and cosine components of the day of the year. Sine and cosine are used instead of the 
actual day of the year to provide continuity to years. This way, December is close to January 
of the next year. 

Days from 
festivity 

Number of days from the last festivity from the day of study. Saturdays and Sundays are 
considered festivities 

Days to festivity Similar to days from festivity, number of days to the next festivity in the calendar. 

Ta 
Daily average temperature observed from the meteorological stations maintained by the 
Spanish meteorology agency (AEMET). 

Prec 
Daily accumulated precipitation observed at the meteorological stations maintained by 
AEMET. 

prec (by hours) 
Similar to precipitation, but instead of the whole day accumulation, it is separated in hour 
ranges (0-6, 6-12, 12-18, 18-24). 

Wanda 
Binary variable that indicates whether there is a football match in Wanda Metropolitano 
stadium in the given day. 

Bernabeu 
Binary variable that indicates whether there is a football match in Santiago Bernabeu stadium 
in the given day. 

Rayo 
Binary variable that indicates whether there is a football match in Rayo Vallecano stadium in 
the given day. 

local_football 
Combination of the previous three that indicates the number of large sport events taking 
place during the same day. Hour of the events are not taken into account. 

Table 5. Summary of the features considered for the classification task 

4.2.4.3. Performance of the classification model 

A model to select the clustering scheme of Level 1 for the months of October 2018 and February, April, June and 
July 2019 has been trained and validated. In order to measure performance two metrics have been used: 

•  Accuracy: This metric measures the number of matrices that have been correctly predicted by the system. 
This metric ranges from 0 to 1, being the higher the better. 

•  F-score: The F-score is a performance metric that evaluates how does a model perform like accuracy but 
taking into account minority classes. By averaging precision (number of predictions from each cluster that 
are correct) and recall (amount of members of each cluster correctly assigned) F-score provides a robust 
metric for model performance. As in the case of accuracy, the metric is bound between 0 and 1, being 1 
the best performance and 0 the worst one. 

One relevant feature of decision tree algorithm is that it provides two descriptive elements of the decision process: 
feature importance and tree plot. Feature importance provides an approximation to the value that the tree gives 
to each feature in the prediction task. The tree plot provides a clear diagram of the decision hierarchy 
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implemented in the classification, which are the complete set of rules followed by the tree when performing 
predictions.  

For the training, available data has been split into 80% training (including hyper-parameter tuning) and 20% 
testing. The accuracy obtained by that tree is 0.941 in training and 0.867 in testing and the f-score is 0.917 and 
0.711 respectively. Table 6 summarises the feature importance values for each feature used in the resulting tree.  

 

Feature name Feature importance 

1 Days from festivity 0.453794 

2 Day of Week: Saturday 0.219578 

3 Sin component of Day of Year 0.210476 

4 Cosine component of Day of Year 0.058022 

5 Average temperature 0.036013 

6 Day of Week: Friday 0.022118 

Table 6. Feature importance values for relevant variables. Those variables not included in the table have resulted in a value of 0 

The table indicates that only 6 variables have been considered relevant by the model, mainly the days from the 
last festivity, whether the day of week of given observation is Saturday and the sine component of the day of the 
year. This suggests that the optimal matrix aggregation is targeted towards work and non-work days with an 
important component of the season each matrix is observed at. The day of the week seems to be relevant, but 
just considering the extended weekend (Friday, Saturday, and Sunday).  

For more detail, Figure 14 provides the detailed view of the trained tree algorithm. 
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Figure 14. Schematic of the resulting tree model 

The topmost variable in the tree is days from festivity in a way that it separates working and non-working days 
from the beginning. This is in line of the generated dendrogram that separates in this way. Regarding the non-
working days sub-tree, the relevant variables are whether the non-working day is a Saturday, the sine component 
of the day of the year and, in some cases, whether the temperature is below 13 degrees (cold versus warm 
weather). 

In the working days sub-tree, it is worth mentioning the relevance of sine and cosine of the day of the year, 
whether the day of week is Friday and, in some cases the temperature (again cold versus warm weather with two 
different thresholds. 

4.2.5. Conclusion  

The approach proposed in this section defines a machine-learning methodology for OD matrices selection. In order 
to generate the initial classes, hierarchical clustering over OD matrices similarity was performed. Once each OD 
matrix is assigned a cluster, the average cluster matrices are computed by all cluster matrices. Similarly, we have 
explored a new methodology for clustering OD matrices based on Graph Embeddings that shows promising results 
attending to the clusters obtained, which break data more naturally and provide more intuitive cluster schemes 
than hierarchical clustering. In any case, further research is needed to validate this approach within the entire 
methodology. 

Using the labelled data and a set of input features based on upcoming dates and scheduled events that are known 
prior to the date of study, a Decision Tree classifier has been developed to predict the clustering class to be 
assigned to each upcoming new date, in order to provide an enhanced approximation of its OD matrix. The 
resulting model demonstrates very high accuracy and F-score values. Furthermore, it has illustrated which are the 
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most relevant factors that affect daily mobility similarities, namely working and non-working days, the season of 
the year and, up to some extent, the observed weather conditions and some specific days of the week such as 
Saturdays or Fridays. 

This model will be useful in the correct prediction of the general mobility to be expected for a given day, which 
can be used to obtain the potential demand to be expected at the city level to feed models developed in 
MOMENTUM project with better estimations that will yield more accurate predictions and, consequently, 
improvements in the design and provision of mobility services by urban planners. 

4.3. Synthetic population generation  

4.3.1. Motivation and objective 

This section introduces the model for generating the synthetic population. The synthetic population is a key input 
to agent-based models and microsimulation of urban systems in order to simulate the behaviour of agents on the 
transportation network as well as their interactions with the infrastructure. 

A synthetic population generation refers to creating a representation of disaggregated population by combining 
aggregated sociodemographic data for the entire population with a sample of disaggregate data such that they 
match known distributions of key attributes for the general population (Beckman et al., 1996). In other words, a 
set of household and person attributes need to be combined, whose attribute distributions match those of the 
general population in small geographic units (e.g., a census tract, traffic analysis zone or TAZ, block group, or 
block). The main limitation with respect to the synthetic population generation is the availability of disaggregate 
data of the population. The data are often difficult to collect as well as the sources usually being heterogeneous, 
which may bring inconsistencies between the available sample data and aggregate distributions. 

In the context of the MOMENTUM project, the objective is to synthesise a simplified representation of the actual 
population, based on sociodemographic and other relevant information (i.e., household and individual attributes), 
from which the preference of an individual in selecting a new mobility service, as opposed to a traditional transport 
mode, can be captured. The synthesised population will be then used as input to the mode choice model to 
estimate the demand for conventional modes as well as emerging mobility services. The main challenge is the 
data availability of samples of the real population that include information with respect to the behavioural 
response of a person, especially for new transport modes and services (e.g., bike-sharing system, ridesharing, 
etc.). To address this limitation, assumptions are made regarding the factors that would affect individuals in 
choosing a new service, based on sociodemographic and other attributes that characterise them (e.g., no car-
ownership or driver's license). 

4.3.1.1. State-of-the-art methods 

In this section, the state-of-the-art approaches of synthetic population generation are briefly reviewed to justify 
the methodology that is selected within the project. 

Various methods have been proposed in the literature for the generation of synthetic population. Data availability 
and quality is the main limiting factor in population synthesis, leading to the development of different methods. 
Generally, population synthesis is performed using one of the following methods: Combinatorial OPtimization 
(COP), Synthetic Reconstruction (SR) and Simulation-Based (SB) (or Statistical Learning, SL) approaches. The 
methods differ with respect to the input data requirements, procedure employed, or the underlying assumptions 
to generate a representative synthetic population. We refer the reader to Müller and Axhausen (2011), Hörl and 
Balac (2020), Yameogo et al. (2021) and Sun et al. (2018) for a thorough state-of-the-art review of population 
synthesis methods. 
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One of the main distinguishing data requirements between the three approaches is that COP and SR methods 
require both disaggregate (sample) data and aggregate data (marginals), while SL methods can synthesise a 
population using only sample data. Moreover, COP and SR methods can only produce reliable and accurate results 
when the reference sample size is sufficiently large, whereas for SL methods the sample size is not a critical factor. 

COP treats population synthesis as an optimisation problem which optimises the sample weights, on a zone-by-
zone basis, to match the zonal marginals (Voas and Williamson, 2000). The main limitations of COP approaches 
are: 1) the attribute association in the sample data not being preserved by the algorithm and, 2) the computational 
cost for large population size (Pritchard and Miller, 2012; Yameogo et al., 2021).  

SR methods generate the synthetic population by combining joint distributions over different variable (attribute) 
sets and then drawing from the reference sample using the fitted joint distribution. One of the most widely used 
SR techniques is the Iterative Proportional Fitting (IPF) (Stephan, 1942) method, which adjusts a contingency table 
constructed from the sample so as to match known marginal distributions of household or person attributes 
(Beckman et al., 1996). However, there may be attributes for certain demographic groups that do not exist in the 
reference sample, especially when dealing with small geographies (for more details see Müller and Axhausen, 
2011; Yameogo et al., 2021; Ye et al., 2009). This will produce division by zero for the empty cells during the 
execution of IPF, leading to undefined results. Moreover, the method does not perform well in matching the 
distributions of person-level attributes and household distributions simultaneously (Guo and Bhat, 2014; Lim and 
Gargett, 2013; Müller and Axhausen, 2011; Pritchard and Miller, 2012). 

In order to address the inability of the IPF methods to simultaneously estimate both household and individual-
level attributes, Ye et al. (2009) proposed the Iterative Proportional Update (IPU) procedure. In particular, the IPU 
procedure computes weights for the sample of the population such that household and person attributes are 
simultaneously matched with their respective known aggregate distributions for a specific geographic area (Ye et 
al., 2009). Furthermore, the IPU method has addressed the zero-cell problem that may occur when applying the 
IPF method. For a detailed description we refer the reader to Ye et al. (2009). For those reasons IPU is considered 
a more advantageous method compared to IPF. One limitation of the original IPU method was its limited 
applicability to only one geographic resolution at a time. Konduri et al. (2016) extended the IPU method to control 
for a variable of interest at multiple geographic resolutions simultaneously. The IPU algorithm will be described in 
more detail in the next section, as it has been selected as the main population synthesis approach used in this 
project. 

Farooq et al. (2013) proposed a novel simulation-based approach to synthesise independent populations, instead 
of determining household weights using the IPF methods and then drawing. They performed Markov chain Monte 
Carlo (MCMC) simulations, using the Gibbs sampling algorithm, to draw synthetic populations from partial views 
of the joint distribution of the real population. The main challenge with this approach is identifying the conditional 
distributions of attributes available from various data sources. Furthermore, SL methods fail to satisfy the 
conditional distributions while satisfying the marginal distributions of all variables simultaneously (Yameogo et al., 
2021). 

4.3.2. Methodology 

The proposed synthesis process for MOMENTUM involves a combination of different methods and techniques. 
The main component of the adopted population synthesis process is the IPU approach, and in particular the 
utilisation of the PopGen standalone package, which will be described in this section. 

Nevertheless, there may be attributes (especially for the new mobility services) that are not available in both the 
census and travel survey data, hence, it would not be possible for the IPU algorithm to map them in the initial 
population synthesis. In such cases, statistical matching procedures will be used to enrich the synthetic 
population with additional attributes. Therefore, a sub-model based on statistical techniques is proposed to 
address the assignment of a specific trip to the synthesised individuals. The sub-model is referred to as the 
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destination choice model and is also described in this section. This procedure is important and requires careful 
consideration of the underlying assumptions that need to be made. 

4.3.2.1. The Iterative Proportional Updating (IPU) 

As mentioned in a previous section, the IPU algorithm generates a synthetic population by fitting household and 
person sociodemographic attributes, available for a sample of the population, with known aggregate distributions 
of those attributes for a specific geographic area. Depending on the data availability (e.g., census and travel 
surveys), different attributes can be considered to generate a synthetic population.  

The IPU is a heuristic iterative procedure that solves the following optimisation problem for estimating household 
sample weights so that the given constraints (for both household and person types) are matched: 

 
𝑀𝑖𝑛 ∑  𝑗 [

∑  𝑖 𝑑𝑖,𝑗𝑤𝑖−𝑐𝑗

𝑐𝑗
]
2

  

Subject to 𝑤𝑖 ≥ 0 

(18) 

 

Where 𝑖 denotes a sample household, 𝑗 denotes the constraint (household/person type), 𝑑𝑖,𝑗  represents the 

frequency of the constraint 𝑗 (household/person types) in household 𝑖. 𝑤𝑖 denotes the weight assigned to sample 
household 𝑖  and 𝑐𝑗  is the value of the constraint 𝑗. 

A brief description of the generalised procedure of the IPU heuristic method is presented in the Annex A2 . 

4.3.2.2. The PopGen synthesiser 

PopGen is an open-source software package (MARG, 2016). The tool was initially created for the Southern 
California Association of Governments (SCAG) Activity-Based Model (ABM) (Ye et al., 2009). PopGen has been used 
as a population synthesiser in several studies in the literature, which have demonstrated its advantages and 
capabilities (He et al., 2020; Jain et al., 2015; Konduri et al., 2016; Ye et al., 2009). One of the main advantages of 
PopGen is that it employs the IPU algorithm (Ye et al., 2009). PopGen provides the flexibility to synthesise a 
population at multiple geographic levels (small, medium, or large regions) simultaneously. 

Therefore, for the scope of this study, PopGen is utilised as a suitable and practical synthetic population 
synthesiser across all case studies, due to the availability of the code package as well as the employment of the 
enhanced IPU methodology.  

4.3.2.3. Destination choice sub-model 

Travel surveys can provide information regarding the mode as well as the trip made by the sample of individuals 
that participated in the survey. However, the shared mobility services that are investigated in this project are 
relatively new modes of transport and are not included in the travel surveys. In fact, the mapping of a destination 
to the trip of a specific individual in the synthetic population is a challenging problem, as it directly depends on 
the data availability and quality which may not be sufficient in assigning accurately trip attributes to all individuals. 
Consequently, adequate assumptions using sociodemographic information, attributes such as home location and 
employment status, need to be made for mapping the synthetic individuals with a trip choice. 

This problem has been tackled in the literature using various approaches and techniques, depending on the 
modelling purpose. For example, He et al. (2020) modelled tour-based mode choice and proposed to simply assign 
household travel survey agendas to the synthesised population’s agendas using socio-demographic information. 
The authors consider two attributes for the assignment, home location and occupation, and every individual in 
the synthetic population is assigned with an agenda of a sample individual from the same traffic zone with the 
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same type of occupation. Following, a mode choice model was used to simulate the modes chosen for each trip 
in the agendas of the synthetic population. Felbermair et al. (2020) proposed the utilisation of Bayesian networks 
and Markov Chain Monte Carlo in combination with stratified sampling in order to generate a synthetic population 
with activities plans using limited survey data. Hörl and Balac (2020) apply a fully data-driven procedure to 
synthesise a population aiming to establish a baseline into which more sophisticated models can be integrated. 
The main component of the proposed process is a statistical matching procedure that combines data sets from 
the census and household travel survey. The proposed synthesis pipeline aims to provide a synthetic travel 
demand on a person level that can be directly used in agent-based transport simulation. 

Within MOMENTUM, sampling techniques and statistical matching procedures (D´Ozario et al., 2006; Hörl and 
Balac, 2020) will be applied under certain assumptions related to the consistency in the data collected and the 
correlation of the mutual attributes (obtained from different data sources) with the new unilateral attributes of 
interest to be added to the synthetic population.  

4.3.3. Data sources 

4.3.3.1. Input data 

The required input data for the generation of synthetic population are usually organised according to the data 
sources, into sample data and census data. For instance, household travel surveys are carried out on a regular 
basis in many countries. They provide essential information for the households, such as the current car-ownership 
and number of driving licenses. These data can be useful in estimating potential changes in travel behaviour that 
may be produced by new mobility services. 

Moreover, depending on the data sources available in the case studies, aggregate and disaggregate OD matrices 
will be used in the population synthesis in order to assign a specific trip to each synthetic individual. Aggregate OD 
matrices can be obtained from the trip distribution of the traditional travel demand models, while disaggregate 
OD matrices for a representative sample are also available for some cities, which may include more accurate 
information than the aggregate OD matrices. For example, OD matrices obtained from mobile data usually include 
sociodemographic information that can be mapped with the census data.  

4.3.3.2. Geographic data 

These datasets are associated with one or more geographic zoning systems at which the specific data or attributes 
are available. Moreover, the available samples may have been obtained from different sources, such as travel 
surveys, household expenses surveys, etc. A necessary first step in the process of generating a synthetic population 
is the mapping of the geographic correspondence between the various data sources. 

The geographic resolution for which the synthetic population will be generated, depends on the geographic unit 
for which the census data as well as travel survey and other sample data are provided for each city. Moreover, 
adequate selection of the geographic areas is also critical for the application of the case studies. The feasibility of 
implementing and evaluating new mobility modes in simulation, depends on the selection of the geographic 
resolution for which the demand is generated. For some shared service systems (e.g., bike-sharing), too much of 
aggregation of an area might be restrictive for the evaluation of the service, while for others, high aggregation 
level may be sufficient (e.g., car-pooling).   

One of the advantages of PopGen is that it enables the geographic correspondence between different resolutions 
that may exist in the available data. For example, the census data might be fragmented into a higher geographic 
resolution compared to the sample data or any other data that may be available only at the regional level. 
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4.3.3.3. Control variables 

The population synthesis model can produce synthetic households and persons based on the available sample 
while matching the aggregate known distributions of key variables (attributes), which are usually referred to as 
control variables. These variables are used as controls by the algorithm for estimating the weights that each 
sample household and individual is assigned with. 

The selection of the control variables of interest depends on the data availability in the census and samples. The 
variables need to be further divided into adequate categories, based on which representative combinations of 
household and person attributes will be created. The exact control variables at household and person level as well 
as the design of the categories to be used in the population synthesis across the case studies, will be identified in 
WP5 based on the data availability for each city. A preliminary investigation of the available data indicates that 
meaningful household and person control variables are available in the census data across the cities. An important 
consideration is to ensure that all control variables that will be selected follow similar patterns for both the 
aggregate census and disaggregate sample data. 

A preliminary investigation of the available data indicates that meaningful household and person control variables 
are available in the census data across the cities. In particular, the variables to be considered are based on the 
other developments presented in this deliverable, e.g., mode choice and car-ownership models, which depend on 
the synthetic population. The identified relevant control variables to be used in the project are provided in Annex 
A2. 

While variables such as household size, number of cars, person´s age, gender, education, and employment status 
are usually available in census and survey data, and hence, possible to be considered for the PopGen synthesiser, 
variables such as Public Transport subscription, driver´s license, are required to be assigned through statistical 
matching. Having mentioned that, the availability of data within each case study may influence this process. 

4.3.3.4. Outputs 

The output of the synthetic population generation module includes the synthesised households and persons for 
the specific geographic zones in each case study.  Subsequently, the synthetic individuals will be used as input for 
the disaggregate mode choice model to estimate the mode choice for every individual. Finally, the individual 
demand requests for a specific trip and service will be given as input to the fleet management module in order to 
plan and operate the demand requests.  

4.3.4. Application within MOMENTUM 

Depending on the data availability for each case study, a combination of the PopGen standalone package and 
statistical techniques will be applied to synthesise the populations for each city. 

4.4. Mode choice 

4.4.1. Disaggregate mode choice model 

4.4.1.1. Motivation and Objective 

With the introduction of shared mobility services, a natural phenomenon is a change in the modal split. Therefore, 
there is a need for a model, which is capable of capturing this phenomenon. Hence, the objective of this section 
is to present a mode choice model for shared mobility services, which can estimate the mode share for the shared 
mobility systems. 
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4.4.1.2. Data source used for model estimation 

In general, mode choice models are developed using Stated-Preference (SP) surveys. However, such a data is not 
available and hence, the development of the mode choice model will be based on a regional household mobility 
survey dataset from Madrid. This survey is carried out by Madrid regional government between February 2018 
and June 2018 and is available at https://datos.crtm.es.   

The dataset contains information such as household and individual sociodemographic characteristics, along with 
mobility-related aspects (e.g., mode choice and trip characteristics), for a sample of 85,064 households. Since the 
sharing systems are only available in certain zones, a reduced sample of 25,464 individuals (based on the traffic 
zones where sharing systems are available) is used for this research.  

4.4.1.3. Estimation methodology 

The mode choice model presented in this section is a multinomial logit model, and as mentioned in the previous 
section, the estimation is based on a household travel survey from Madrid. Any household survey, usually, 
contains details about the trips taken by the respondents, and data that characterize the different available modes 
(e.g., travel time or cost associated with different modes) will not be available. Similar is the case with the Madrid 
survey dataset. Hence, it is not possible to estimate a classical multinomial logit mode choice model. Therefore, a 
personal-level model is decided to be developed. Such a model is not newly implemented in this project, but 
rather is already found in literature (e.g., Anderson and Simkins, 2012; Cheng et al., 2014; Liang, et al., 2020). Some 
studies term such a model as generalized multinomial logit model (e.g., Anderson and Simkins, 2012). 

The alternatives for mode choice used in this research are the following: (i) Conventional systems-as-a-whole, (ii) 
Bike-sharing, (iii) Car-sharing, and (iv) Ridesharing. For ridesharing, trips carried out in mobility services such as 
Uber are taken as proxy. While the mode choice models usually include all kinds of modes (individual conventional 
and the shared modes), all the conventional modes are considered under single alternative in this research. In 
general, several cities do not have a sufficient data to estimate a mode choice model, which includes all 
conventional modes and the different shared mobility systems. Hence, development of a mode choice model 
between conventional systems-as-a-whole and the different shared mobility systems could be beneficial, as such 
a model could be used in other cities. This kind of use is possible, given that it is possible to generalize the demand 
characteristics of shared mobility systems [e.g., unique profile of users such as younger individuals, possession of 
Bachelor's degree or higher, and holding of PT passes (Becker, Ciari, and Axhausen, 2017; Clewlow, 2016)]. 

Following the decision on the variable type used in the model (i.e., personal-level attributes), the subsequent 
concern is on the lower number of samples for the shared mobility services (< 1 %). This could cause problems 
such as accurate predictions and separation issues. Therefore, it is decided to consider the choice for shared 
mobility services as a rare event and use a penalized likelihood estimation approach. However, this approach, 
although negated the issues of accurate predictions and separation issues, still is affected by model insensitivity 
due to very high-class imbalance. Furthermore, the computation time is enormous. Hence, synthetic sampling 
based on the technique of SMOTE (Synthetic Minority Oversampling Technique) (Chawla, Bowyer, Hall and 
Kegelmeyer, 2002) has been carried out. The aforementioned methodology is shown in Figure 15. 

Model specification is developed in a stepwise fashion, first backward (from saturated models), where only 
variables of high significance are kept and then forward (from empty models), where significant variables are 
added one after the other. The decision to keep an independent variable is based on the p-value (significance level 
of 0.10) of the corresponding variable and the likelihood ratio test. 
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Figure 15. Methodology – Disaggregate mode choice model 

4.4.1.4. Estimation results 

The final model specification, which is selected based on the p-value of the independent variables and the 
likelihood ratio test, is as follows: 

𝐵𝑖𝑘𝑒 − 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 (𝐵)  
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐴𝑔𝑒20 − 44 +  𝑖𝑠𝑀𝑎𝑙𝑒 +  ℎ𝑎𝑠𝑈𝑛𝑖𝑣𝑂𝑟𝑉𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 
+  𝑃𝑇𝑃𝑎𝑠𝑠𝐷𝑢𝑚𝑚𝑦 +  𝐻𝐻𝐶𝑎𝑟𝑠𝑁𝑢𝑚  +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀 ≤ 2 +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀
> 2𝐴𝑛𝑑 ≤ 5 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑀𝑖𝑛𝑠 ≤ 30 +  𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝐵𝑖𝑘𝑒𝑠𝐼𝑛𝑍𝑜𝑛𝑒 

𝐶𝑎𝑟 − 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 (𝐶)  
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐴𝑔𝑒20 − 44 +  𝑖𝑠𝑀𝑎𝑙𝑒 +  ℎ𝑎𝑠𝑈𝑛𝑖𝑣𝑂𝑟𝑉𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 
+  𝑃𝑇𝑃𝑎𝑠𝑠𝐷𝑢𝑚𝑚𝑦 +  𝐻𝐻𝐶𝑎𝑟𝑠𝑁𝑢𝑚  +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀 > 2𝐴𝑛𝑑
≤ 5 +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀 > 5𝐴𝑛𝑑 ≤ 15 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑀𝑖𝑛𝑠
≤ 15 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑀𝑖𝑛𝑠 > 15𝐴𝑛𝑑
≤ 30 +  𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝐵𝑖𝑘𝑒𝑠𝐼𝑛𝑍𝑜𝑛𝑒 

(19) 

 



 

 

Modules: Induced demand  |  OD  |  Synthetic population generation  |  Mode choice |  

     Fleet management  |  Traffic assignment  |  Car ownership  |  Emissions 

Deliverable 4.1 New transport modelling approaches 
for emerging mobility solutions 

Page 58 of 137 

Copyright © 2021 by MOMENTUM Version: Issue 1 Draft 2  

 

𝑅𝑖𝑑𝑒 − 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 (𝑅)  
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐴𝑔𝑒20 − 44 +  ℎ𝑎𝑠𝐴𝑛𝑦𝐿𝑖𝑐𝑒𝑛𝑠𝑒 
+  ℎ𝑎𝑠𝑈𝑛𝑖𝑣𝑂𝑟𝑉𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 +  𝑃𝑇𝑃𝑎𝑠𝑠𝐷𝑢𝑚𝑚𝑦 +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀
> 2𝐴𝑛𝑑 ≤ 5 +  𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝐾𝑀 > 5𝐴𝑛𝑑 ≤ 15 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑀𝑖𝑛𝑠
≤ 15 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑀𝑖𝑛𝑠 > 15𝐴𝑛𝑑 ≤ 30 

𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 − 𝑎𝑠 − 𝑎 − 𝑤ℎ𝑜𝑙𝑒 =  0 (𝑏𝑎𝑠𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 

The estimation results are shown in Table 7. 

Variable Estim. S.E. z-val Interpretation 

Age20-44 (B)  1.14 0.04  26.18 
Individuals with age from 20 to 44 are more likely to 
use sharing systems 

Age20-44 (C)  1.04 0.04  24.68 

Age20-44 (R)  0.80 0.04  19.99 

isMale (B)  1.44 0.04  37.73 Males are more probable to use bike-sharing & car-
sharing systems isMale (C)  1.25 0.04  35.96 

hasAnyLicense (R)  -0.23 0.04  -5.24 
Individuals having (any) license are less probable to 
use ridesharing system 

hasUnivOrVocational 
Degree (B & R) 

  0.92 0.04  25.13 
Individuals with a university or a vocational degree 
are likely to use sharing systems hasUnivOrVocational 

Degree (C) 
  1.50 0.05  31.11 

PTPassDummy (B)   1.07 0.04  24.18 Owning a public transport pass positively influences 
the use of bike-sharing & car-sharing systems, 
especially a stronger influence is found for the 
former, while negatively influences ridesharing. This 
could mean that car-sharing and bike-sharing 
complements PT, while ridesharing does not. 

PTPassDummy (C)   0.83 0.04  20.04 

PTPassDummy (R) -0.32 0.04 -8.11 

HHCarsNum (B) -0.68 0.03 -26.82 
A. With an increase in the number of private cars in 

the household, there is a decrease in the 
likelihood to use bike-sharing system. 

B. However, an increase in likelihood is observed 
for car-sharing system. This could mean that 
people with higher number of cars might give up 
their secondary cars and shift to car-sharing. 

HHCarsNum (C)  0.43 0.02  21.95 

TripDistKM≤2 (B)  1.57 0.07  21.77 

A. Bike-sharing systems are more likely to be used 
for trips with distances up to 5 km, with 
significantly higher probability for the range 2 to 
5 km. It is to be noted that for distances less than 

TripDistKM>2And≤5 (B)  2.37 0.06  36.54 
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TripDistKM>2And≤5 (C) 
TripDistKM>5And≤15 (R) 

 1.75 0.04  44.92 

2 km, one could walk and distances beyond 5 km 
could be considered long. 

B. Car-sharing systems are expected to be used for 
a distance range of 2 to 15 km, with a higher 
probability for the range 2 to 5 km. 

C. Similarly, ridesharing systems are also expected 
to be used for a distance range of 2 to 15 km. 
However, a higher probability is found for the 
range 5 to 15 km. The reason could be better 
savings for longer distances. 

TripDistKM>2And≤5 (R) 
TripDistKM>5And≤15 (C) 

 1.67 0.04  41.12 

TravelTimeMins≤15 (C)  1.85 0.06  31.04 

There is a lower probability to use sharing systems 
for travel times beyond 30 minutes. 

TravelTimeMins≤15 (R) 
TravelTimeMins>15And 
≤30 (C) 

 1.26 0.05  27.59 

TravelTimeMins>15And 
≤30 (R) 

 0.76 0.05 15.42 

TravelTimeMins≤30 (B)  0.79 0.07  11.61 

numberOfSharingBikesIn 
Zone (B) 

 1.38 0.05  28.43 

With an increase in the number of sharing bikes in 
the traffic zone, there is a higher probability to use 
bike-sharing. Note: the number of bikes is 
represented in terms of hundreds. 

ASC (B) -4.60 0.09 -50.45 - 

ASC (C) -5.54 0.08 -66.17 - 

ASC (R) -2.44 0.06 -39.38 - 

McFadden R2: 0.22; Log-likelihood: -28261 

Table 7. Estimation result – Disaggregate mode choice model 

Besides the aforementioned variables, in order to consider non-availability of a sharing vehicle, a dummy variable 
with very high negative coefficient (-100) is added to the utility specification of the sharing systems. Thus, if no 
sharing vehicle is available to serve a trip request, the utility becomes highly negative, thereby restraining the 
allocation of a sharing mode for that trip. Similarly, in order to consider the fact that car-sharing cannot be used 
by individuals without license type B or higher, another highly negative coefficient is added to the utility 
specification of car-sharing system. 

We acknowledge the importance of influence of travel cost on mode choice. Unfortunately, the household survey 
does not contain any cost related data. To overcome this issue, synthetic travel cost could be estimated using 
information such as published public transport and shared mobility system fares. However, this involves making 
several assumptions about the costs of travel, which we do not feel warranted making. 

4.4.1.5. Application within MOMENTUM 

Within MOMENTUM, this model will be implemented in all the four case studies. The split between conventional 
systems-as-a-whole and the different shared mobility systems will be determined using the model presented in 
this section and the split between the different conventional systems will be determined using the conventional 
aggregate mode choice models of the cities.   
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4.4.2. Data-driven shared mobility demand 

The prediction of the expected shared mobility demand is relevant for the correct planning and strategic 
development of the systems and crucial for the understanding of the city transport system by any urban planning. 
Having an accurate estimation of the expected trips captured by shared mobility services is therefore relevant for 
both operators and urban planners to obtain an accurate picture of the mobility in the city. 

Each city’s mobility is explained in detail through “general mobility OD matrices”. Such OD matrices can be 
approximated using different sources, such as city-wide surveys, traffic counts or new data sources like mobile 
phone records and simulation models.  

The main hypothesis for the development of the current demand estimator is that the trips performed by any 
shared mobility service is the combination of different levels of trips captured according to a series of 
segmentations (traveller age, destination purpose, etc.) of general mobility matrices. The proposed demand 
prediction model takes as input different segmentations of the general mobility OD matrix along with other 
environmental elements from the specific trip origins and destinations. This translates into an OD pair-based 
prediction model that takes as input the general mobility OD matrix (e.g., the output from the model presented 
in Section 4.2), weather observations at each origin zone and land use shares of each zone and predicts the amount 
of trips captured by a specific shared mobility service by OD pair and unit of time.  

The disaggregate mode choice model (Section Disaggregate mode choice model4.4.1) and this model have a 
substitutional nature, since the use of one negates the need for the other. Mode choice models are the commonly 
used methods in transport models. However, if one wishes to use shared mobility service data, the data-driven 
demand model can be used to replace the disaggregate mode choice model. The output of the data-driven 
demand model is an OD matrix of shared mobility, and the information of this matrix can be fed into the synthetic 
population module. Since the entry matrix is already mode specific, the output of the synthetic population does 
not have to pass through the disaggregate mode choice model, rather it can enter directly to the fleet 
management module. In this case, the framework will be different to the one presented in Figure 2. As a 
consequence, a feedback between fleet management module/traffic assignment and shared mobility demand 
estimation is not possible due to the data-driven nature. Similarly, a feedback between induced demand and OD 
generation step cannot be implemented.  

The next sections describe the architecture of the model and the main reasons behind it, the features considered 
and the results of the development and validation of two prediction models for two shared mobility services: 
BiciMAD and Muving. 

4.4.2.1. Shared mobility and the histogram problem 

An important issue regarding the correspondence between shared mobility and general mobility is the trip 
volumes of each alternative. At present, shared mobility services have still a low penetration within cities' 
mobility ecosystems, not even reaching 1% of observed trips as a whole. In fact, the total volume of trips 
observed at any given shared mobility service is almost negligible when separating in smaller geographical units, 
such as OD pairs.  

As a result, the relation between shared and general mobility is difficult to observe, as the volume of trips in shared 
mobility is comparable to noise with respect to general mobility trip volumes. Moreover, when shared mobility 
trips are scattered over different dimensions, such as OD pairs, there is a significant reduction on observed values 
that complicates the process of any machine learning algorithm to generate a useful model. 

Even though the values observed in the target variable suggest that a service shared mobility trip distribution is 
limited and has not many variations, it may be the case than the underlying distribution (the one to be predicted) 
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is much more diverse and useful, but the available sample is limited due to trip scarcity. This has been called the 
histogram problem. 

In this light, data augmentation techniques have been explored in an attempt to increase the richness of the 
observed target variable to facilitate the pattern recognition process carried out by machine learning models. This 
way, the augmented variables should provide more representative samples for the problem that simplify the 
learning process. For this model, the proposed methodology for data augmentation consists of summing the 
observed trips (in shared mobility) at each OD pair for the same days of the week (for instance, all Mondays 
together, all Tuesdays, etc.) to amplify the target variable and make it comparable to the main input features. 

To measure the potential of this approach, an estimation of the richness of the target variable is needed. One way 
of measuring how informative a dataset is computing its entropy. In this sense entropy indicates whether the 
observed values of a distribution are homogeneous and not representative of the real distribution (low entropy) 
or heterogeneous and therefore more representative of the actual distribution (high entropy). 

An important remark is that observing a low entropy value in the target variable does not necessarily mean that 
the variable is easy to predict, rather that the values available for training are not a representative sample of the 
underlying distribution. Table 8 displays the entropy of each of the datasets along with the observed number of 
trips: 

Dataset Total trips Entropy Entropy after augmentation 

BiciMAD 752,103 1.2 5.18 

Muving 44,828 0.11 0.91 

Table 8. Entropy of the trip registers per day, hour, and OD pair of each service 

In the table it can be observed that the data augmentation process is able to significantly increase the observed 
entropy of each variable, making target variables better for better inference of machine learning model. 

4.4.2.2. Architecture of the data-driven shared mobility demand model 

The proposed model consists of a machine learning regressor that takes as input a set of features (described in 
the feature section below) and returns an estimation of the trips captured by shared mobility for each OD pair and 
day of study. The general workflow of this model is displayed in Figure 16 below. 

 

Figure 16. Workflow of the prediction model. 

The model follows a simple flow where raw data is initially pre-processed into a set of feature tables that contain 
the variables derived from each data source organised by OD pair, hour, and day (or a subset of them if the data 
source does not have such a high granularity). Once these feature tables are obtained, they are fed into a data 
fusion process where they are merged altogether based on the previously defined indexes (OD pair, hour, and 
day). The result from that block is a complete training set that contains as target variable the number of trips 



 

 

Modules: Induced demand  |  OD  |  Synthetic population generation  |  Mode choice |  

     Fleet management  |  Traffic assignment  |  Car ownership  |  Emissions 

Deliverable 4.1 New transport modelling approaches 
for emerging mobility solutions 

Page 62 of 137 

Copyright © 2021 by MOMENTUM Version: Issue 1 Draft 2  

 

performed in the given shared mobility service and as input different segmentations of the general OD matrix as 
well as weather values and land use value, everything for every combination of OD pair, hour and day.  

This input is ready for use in a machine learning setting. Nevertheless, as shown in the previous section of the 
histogram problem, it has been observed that shared mobility trips have a very low volume in contrast to general 
mobility, which makes the learning process much harder and yields worse performance from the resulting trained 
model. To alleviate this, the resulting input data is subject to a process of data segmentation and aggregation that 
increases the volume of observed shared mobility trips and subdivides the model into more specific and targeted 
models. Concisely, the steps in the data augmentation process are the following: 

• Spatial aggregation: Both shared and general mobility OD matrices are obtained by assigning the trips of 
different agents (shared vehicles and mobile phone users) to a specific zoning. For the present model, the 
selected zoning is a square grid matrix of 1,000 metres side. 

• Daily aggregation of trip counts: For each day of study, sum all hours by OD pair and day, making the 
prediction target the daily estimated trips per OD pair. 

• Day of the week aggregation: Extract the day of the week of each day and aggregate by day of week and 
OD pair, summing shared mobility trips and averaging general mobility trips. This way, for each day of the 
week and OD pair there is a register with average values for the general OD matrix segmentations of all 
the available same days of the week and summed shared mobility trips of these days. 

• Distance segmentations: Using the inter-quantile range, the model gets segmented into four full models 
according to OD pair distances, each model for each quantile of distances. After the individual prediction 
of each sub-model, the predictions are grouped and provided as a single prediction and, therefore, the 
results presented in this document are presented as a single model in practise. The trip distances are (in 
kilometres) the following: 

o Bike-sharing: 0-1.256,1.256-1.893,1.893-2.734,2.734-10 
o Moto-sharing: 0-1.343,1.343-2.42,2.42-3.52,3.52-10 

Once the data has been augmented, each segmentation can be fed to a machine learning regression algorithm 
that will train a model to predict the amount of shared mobility trips under the augmentation conditions 
(aggregated into a daily forecast of summed trips by day of week per OD pair). In order to obtain a daily prediction 
per OD pair, the output of the model is then divided by the number of weeks used for the training set. 

4.4.2.3. Shared mobility demand model prediction features 

The main hypothesis of the prediction model is that shared mobility trips are influenced by different 
segmentations of the general mobility OD matrix. Hence, the main data source for trip prediction are general 
mobility trip registers. Apart from these data, weather information has been included under the premise that the 
weather at the origin is relevant specially for bike-sharing and moto-sharing services under study. Finally, land use 
at origin or destination is considered as a proxy of the kind of areas where shared mobility services are more 
popular. 

4.4.2.3.1. General mobility OD matrix 

It has been observed that shared mobility trips are more influenced by certain segmentations of the general OD 
matrix, concisely by those generated from the age of the travellers and the destination purpose of each trip (The 
reader may refer to Deliverable D3.3 of the MOMENTUM project for further details). 

For that purpose, the features derived from the general mobility OD matrix have been derived as the number of 
trips obtained for the following segmentations of the general matrix in terms of age and destination purpose: 

• E1_H: Age group 1 (between 20 and 44 years old) and destination purpose home. 

• E1_W: Age group 1 and destination purpose work. 
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• E1_O: Age group 1 and destination purpose other frequent activities. 

• E1_NF: Age group 1 and destination purpose non-frequent activities. 

• E2_H: Age group 2 (between 45 and 64 years old) and destination purpose home. 

• E2_W: Age group 2 and destination purpose work. 

• E2_O: Age group 2 and destination purpose other frequent activities. 

• E2_NF: Age group 2 and destination purpose non-frequent activities. 

Even though it is not expected that shared mobility demand is a direct function of general mobility, each service 
demand could be explained to some extent by a combination of the demand on different population 
segmentations according to their user’s preferences and characteristics. 

4.4.2.3.2. Weather data 

The weather is a very important factor in the modulation of shared mobility demand of a city. In general, bad 
weather can impact on shared mobility user’s willingness to take a shared mode to their destination differently. 
While for car-sharing services bad weather (rain, low temperatures, etc) might incentive use for being a much 
more comfortable alternative to almost any other mode (except private car), other services such as bike-sharing 
or moto-sharing will experience a demand reduction due to potentially uncomfortable and dangerous trip 
experiences. 

In this light, the proposed prediction system takes as input a collection of weather-related variables that capture 
variations on different dimensions that could affect shared mobility services. Concisely, the proposed features are 
the following: 

• Precipitation: the amount of precipitation collected at ground in mm. Values are obtained with an hourly 
granularity. The use of non-car vehicles during precipitation is dangerous very uncomfortable, so service 
demand could be severely impacted when observed precipitation is high. 

• Temperature: the average temperature observed during a unit of time. Values are obtained with an 
hourly granularity. Low temperatures make the use of non-car vehicles uncomfortable and many users 
may avoid using these vehicles (and services) when temperature is low. 

• Maximum temperature: the maximum temperature observed within a pre-determined period of time. 
This value is computed hourly. 

• Wind speed: the average wind speed observed within a period of one hour. Strong wind gusts make 
driving dangerous, especially non-car vehicles. 

• Barometric pressure: average measured barometric pressure collected hourly. Low pressure is a typical 
sign of bad weather conditions that would impact the demand of shared modes: car-sharing services may 
experience a spike on demand whereas the rest of services' demand will drop. 

• Visibility: A qualitative measurement of the visibility provided by weather services. Bad visibility makes 
trips more dangerous and can be perceived as a sign of bad weather with consequences explained above. 

4.4.2.3.3. Land use 

In general, every building within a city is built for a specific use like household, offices, sports, etc. Governmental 
agencies typically provide such data at the building level and could be useful to characterise each zone within the 
city in terms of the services and facilities available inside each zone. For that purpose, the introduction of land use 
variables is proposed to capture such information on the origin and destination zone of each OD pair. 

The process to derive land use variables consists of intersecting the zoning file with a building-wise spatial file that 
has associated the main use of each building. This way, it is possible to sum together the area of each usage type 
available for a given zone and divide it by the total area of each zone. The result of this process consists of the 
proportion that each land use type represents for every given zone. Concisely, the land uses are the following: 
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• Amount of total area dedicated to parking and warehouse facilities. 

• Amount of total area dedicated to households in the zone. 

• Amount of total area dedicated to industrial uses. 

• Amount of the total zone area dedicated to office buildings. 

• Amount of the total zone area dedicated to shops and commercial use. 

• Amount of the total zone area dedicated to sports uses. 

• Amount of the total zone area dedicated to shows and performances. 

• Amount of total area in the zone dedicated to restaurants and leisure. 

• Amount of area within the zone dedicated to health and charity. 

• Amount of area within the zone dedicated to culture. 

• Amount of area in the zone dedicated to religious uses. 

• Amount of area in the zone of construction sites and gardens. 

• Amount of area dedicated to singular buildings (such as monuments, stadiums, or remarkable 
governmental buildings). 

Each of these variables is introduced into the prediction system for both the origin zone and destination zone at 
each OD pair. For each use two values are reported: the amount of space dedicated to that use in the origin and 
destination zone. 

4.4.2.3.4. Alignment of model data 

In order to generate the data described above, each of the required data sources is initially pre-processed to 
generate tabular format data sources that contain the feature values associated to a specific zone or OD pair, date 
and time that come from that data source. Concisely, the level of aggregation is the following: 

• General OD matrices: general mobility OD matrices are ordered by OD pair, date and time. 

• Weather data: weather data is associated to date and time and to a meteorological station that has a 
well-known spatial position. When assigning weather values to each of the OD pairs in the matrix, the 
closest station to the origin zone of each pair is selected. 

• Land use: land use data is organised by zone and gets associated to both the origin and destination zones 
of each OD pair. 

Once the data is arranged in this way, the data fusion process consists in aligning the features from each source 
according to a subset of time, date and origin and destination zones with the target data (shared mobility trips for 
a given date, time and origin and destination zones). The result of this step will consist of a tabular dataset that 
contains for each day, time and OD pair the number of trips observed in shared mobility along with each of the 
features described above. Then, the data augmentation process described before is in charge of aggregating and 
segmenting the data for the model training step. 

4.4.2.4. Shared mobility demand model training 

Previously, it has been defined that each model is sub-divided into four different model by separating OD pairs 
according to their distance. As a result, in terms of machine learning, the system trains and uses four different 
models which results get aggregated for result presentation and performance analysis.  

Each of the models is a regression model based on the random forest algorithm. Random forest algorithm is a 
machine learning model that trains a set of decision tree regressors from different random sub-samples of the 
input data points and features. Once trained, such an ensemble performs a prediction of each tree for a given data 
point and averages all of them into a single prediction.  

In order to optimise the outcome of the random forest algorithm hyper-parameter tuning, that consists of the 
optimisation of certain free model parameters, is performed over the training set. Concisely, the set of hyper-
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parameters to be updated are decision tree depth and number of samples per tree leaf and the number of trees 
the random forest trains.  

To ensure the correct characterisation of these sets of parameters, 3-fold cross-validation is used. 3-fold cross-
validation consists in randomly splitting data into 3 uniform chunks and perform 3 training iterations for each set 
of parameters, using a different chunk as testing data each time. This way, the performance score metrics obtained 
for each set of parameters are robust and the best performing set of parameters can be safely selected. Each 
model is trained and evaluated over three datasets that are derived from the available data: 

• Validation set: In order to ensure the correct generalisation abilities of the model, the last two days of 
each dataset are kept aside for final validation. 

• Training set: It accounts for 80% of the remaining data and is used in for training the model through cross-
validation. 

• Test set: It accounts for the remaining 20% of data and is used as an initial test of the developed model 
generalisation abilities. 

After training, the system computes the performance metrics of each model evaluated at each one of these sets. 
This enables to ensure that the resulting model is capable of generalising and also enables early detection of 
potential model problems, such as over-fitting. The metrics computed over each dataset are the following: 

• Coefficient of determination (R2): The coefficient of determination is a statistical score that measures 
dispersion between target variable variance and model residuals variance. Model residuals are defined as 
the errors the model incurs in when making predictions. Typically, it is interpreted as the measurement 
of the amount of variance from an observed variable a model is capable of predicting. 

• Root Mean Squared Error (RMSE): Root mean squared error is the square root of mean squared error 
(MSE). MSE measures the average squared differences between target variable and model predictions.  

• Mean Absolute Error (MAE): The mean absolute error measures the average of the absolute differences 
between target variable values and predictions performed by the model. 

• Predicted trip volumes: Compare the total number of trips predicted with respect to the total number of 
trips observed in the service. 

• Trip volume variation: Difference in percentage between predicted and observed trip values. 

4.4.2.5. Experiment setup 

This model has been developed for the city of Madrid using data from official sources and two shared mobility 
operators: the public bike-sharing operator (BiciMAD) and a private moto-sharing company operating in the city 
(Muving). General mobility matrices are obtained from mobile phone network data by Nommon and provide 
mobility estimations within the city for the required age and destination purpose segmentations. Weather data is 
collected from the national meteorology agency (AEMET) and land use is obtained from the national treasury 
agency (Catastro). 

Each of the shared mobility services is used independently to train a service-based model that takes as input all 
the features defined and provides a prediction of expected trips in such service for each OD pair and day of week. 
In all cases, the data available corresponds to the month of October 2019 and the three first weeks of February 
2020. The last week of February 2020 has been removed to avoid the potential impacts that COVID-19 measures 
carried out by companies may have on general mobility. 

Despite the model segmentation, its validation reports are provided as a whole, joining the predictions from all 
sub-models together into single model metrics. In the case of the models for BiciMAD and Muving services, the 
validation set is composed by the daily data from February 23rd and 24th 2020. The training and test sets consist 
of a random sampling (80% train, 20% test) of the augmented data of all days used except from those in the 
validation set. 
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4.4.2.6. Shared mobility demand model results 

In this section we provide the modelling results and performance analysis of the implementations of the demand 
prediction models for the shared mobility services of BiciMAD (bike-sharing) and Muving (moto-sharing).  

4.4.2.6.1. BiciMAD 

The BiciMAD service is a station-based shared bicycle service that is deployed mainly in Madrid city centre, as 
shown in Figure 17. The service has an average trip volume of 8,000-10,000 trips a day, for approximately 2,500 
bicycles deployed. 

 

Figure 17. Domain covered by BiciMAD stations 

The results for the demand model of BiciMAD service and the metrics of each set are presented in Table 9.  

Metric Train Test Validation 

Coefficient of determination (R2) 0.94 0.88 0.73 

RMSE 21.94 29.65 4.51 

MAE 14.3 18.75 3.05 

Target entropy 5.13 8.75 7.39 

Aggregated trips (predicted/actual) 448,048/447,825 111,875/112,005 8,095/7,407 

Trip variation (%) 0.04 -0.11 8.5 

Table 9. Test, training, and validation results from BiciMAD model. Validation values correspond to disaggregated predictions 

As observed in the matrix, the model has very good performance, with a very high R2 value at train and test data 
sets. Similarly, the observed error is reasonable, taking into account that the reported values in train and test 
correspond to an 8-week data aggregation. In addition, Figure 18 displays the regression graph of each dataset. 
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Figure 18. Performance plot of the regression system. Each plot represents a single data set (train, test and validation respectively) 

The figure displays for each dataset a scatter plot that contrasts trips observed in the service on the x axis to their 
equivalent model predictions on the y-axis. Thus, the closer the scatter is to the red diagonal line, the better 
performance the model will have. In this case, we can observe that all three cases are correlated with the red line, 
suggesting that the model has good generalisation capabilities in spite of the deterioration observed at the 
validation set. 

4.4.2.6.2. Muving 

The Muving service is a free-float motorcycle-sharing service that operated within a geofence in the central area 
of Madrid (typically called “Almendra Central” and some whereabouts). The geofence of this service is shown in 
Figure 19. The service had approximately 1,000 vehicles deployed in the city and a volume of nearly 500-1,000 
trips a day. It is worth noting that shortly after the time periods selected for this experiment the service stopped 
their operations in Madrid. 

 

Figure 19. Geofence of the Muving moto-sharing service 

Results for Muving service prediction model are presented in Table 10. 

Metric Train Test Validation 
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Coefficient of determination (R2) 0.75 0.67 0.14 

RMSE 0.94 1.04 0.22 

MAE 0.48 0.52 0.08 

Target entropy 0.94 10.44 9.22 

Aggregated trips (predicted/actual) 28,968/29,066 7,060/7,140 538/353 

Trip variation (%) -0.33 -1.13 34.5 

Table 10. Test, training, and validation results from Muving model. Validation values correspond to disaggregated predictions 

The table clearly shows that the model reaches a fair performance, especially in the train and test sets but shows 
very bad results in the validation set. This is probably related to the shutdown of the service shortly after February 
2020, which together with the low volume of trips observed indicates that the modelling phase has been carried 
out using data from the final time period of the service in the city. As a result, it is possible that the low 
performance obtained in the validation phase is motivated due to a decreasing trip trend that cannot be captured 
by the model. Figure 20 displays the performance plots of the model for each of the available data sets. 

 

Figure 20. Performance plot of the demand prediction model for Muving service 

While the performance shown by train and test datasets is reasonable, showing a model capable of accurately 
predicting demand, it is clear that the sample from the validation set is small and much smaller than the actual 
prediction carried out by the model. Hence, even though the Muving case has particular problems at validation, it 
can be concluded that, in general, the proposed modelling scheme is capable of capturing the demand of a given 
service and perform valid predictions for established services. 
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5. Fleet management 
This chapter presents the fleet management modelling approach as part of strategic transport models, integrated 
with a shared mobility service simulation platform. The following sections will provide more detailed explanation 
of the fleet management planning and operational models and the Aimsun Ride traffic simulation platform. 
Furthermore, the fleet management objectives, methods, and KPIs vary depending on the shared mobility service 
that is being modelled and evaluated. Thus, each section revisits the aforementioned three topics to give more 
specific details about the implementation. The current deliverable considers four discrete case studies of on-
demand transport shared mobility services: 1) Demand Responsive Transport (DRT), 2) Ridesharing (RS), 3) Car-
sharing (CS), 4) Bike-sharing (BS). These shared mobility services have similarities as well as differences with 
respect to the objectives of the shared-service, service specifications and fleet resources. All shared mobility 
services share similar features that lie in the general on-demand framework. For example, all the services receive 
online requests. Additionally, they aim to maximize the number of accepted requests, while utilizing as few 
resources as possible. Lastly, all modes care about sharing economy, environmental footprint, and user’s trip 
duration. Nevertheless, because of the differences, some of the objectives and KPIs need to be adjusted based on 
the service specifications. 

5.1. Motivation and background 

This section presents the overall modelling framework on how the fleet management module and transport 
simulation platform communicate and cooperate. Mainly, the Aimsun Ride shared mobility service simulation 
platform, implemented within the Aimsun Next (Aimsun, 2020) transport modelling simulation software, is used 
to get precise and accurate information about transport network behaviour, while fleet management algorithms 
are used to handle both planning and operational components in the simulation experiments. The fleet 
management term used in this document refers to both the operational aspect of the problem and the planning 
procedure. In general, there are two concrete categories of problems in transport service design:  

1) Planning - Planning models are responsible of generating the strategic characteristics of the service, 
such as the desired fleet size, the number of stops and the whole network it covers (in case of service 
with stops or docks), the human resources, and the area to operate. However, it is usually difficult to 
create exact mathematical models capable of capturing all the uncertainties involved as well as the 
large number of decision variables that need to be considered. Thus, it needs to make use of transport 
simulation along with demand generation based on various probability distributions, so that the 
proposed design is robust and efficient; and 

2) Operational - Operational algorithms are used to expand the available search space, as better 
approaches produce lower optimal bounds and make use of fewer resources.  More precisely, the 
integration of efficient and high-performance optimization algorithms allows lower bounds on optimal 
solution, and less available resources. 

With the use of the shared mobility service simulation platform, Aimsun Ride, this study also aims to examine and 
develop algorithms that could be applicable in real world cases, as the study incorporates the simulation results, 
which can reveal interesting real-life cases and dynamic events like congestion, accidents, and urban mobility 
demand trends. Consequently, the transport modelling, planning, and operation must take place under the same 
framework which involves the optimization strategies, Key Performance Indicators (KPIs), and the stochastically 
distributed demand scenarios.    

The general workflow illustrated in Figure 21 describes how fleet management, simulation platform, metrics and 
generated demand interact with each other. At first, the disaggregated demand is inserted into the simulation 
platform to generate the OD matrices and demand requests. Additionally, this demand data feed the fleet 
management planning module, which is responsible for decisions like the size of the fleet, the capacity of each 
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vehicle, the area to be served or the location of the stops (or docks) and depots. Given those resources and 
demand, the fleet management operational module is used to handle the requests that are created dynamically 
inside the simulation. Therefore, the whole process can be described as two major loops that have direct 
interaction. The planning loop (big and slower) takes as an input the disaggregated demand and the KPIs (for both 
users and the fleet) produced by a batch of simulation experiments and use them to compute the new system 
parameters (planning features) via optimization techniques. In contrast, the operational loop (small and frequent) 
interacts immediately with the simulation environment, in the role of service manager, using operational research 
algorithms that allocate resources or assign requests to routes. The operational fleet management problem uses 
the actual operational costs including energy, customer satisfaction and fixed costs; while planning optimization 
aims to optimize strategic features, related with macroscopic econometric parameters of the system.  

 

Figure 21. Workflow between planning and operation fleet management  

5.2. Input data required for fleet management modelling and simulation 

As presented in Figure 21, the input data must have the form of disaggregated demand that contain, at least, the 
origin, destination, and the timestamp of each request. Those data can be produced from various data sources. 
The most common ones are the household surveys, which can produce a reliable and representative sample. In 
other cases, floating car data, produced either by taxi fleets and public transport services or by individuals via GPS 
devices and smartphone applications, can be processed to create a dataset of trips with origin and destination 
features. Moreover, smart ticketing of modern transport services can be used to collect and analyse the pattern 
to generate the appropriate data. 

Data sources are summarized in Table 11, along with comments about the easiness of collection, the quality and 
the ability to retrieve a representative view of mobility patterns, and the services for which details can be 
extracted. For instance, survey data collection can provide high quality data, but it is expensive to collect adequate 
sample size, which can be reliable. On the other hand, Floating Car Data (FCD) can be collected relatively easier 
and in a more affordable way. However, they need detailed pre-processing as they include significant number of 
outliers. Lastly, user data from micro-mobility and car-sharing related services can approximate origin and 
destination observations, however the information is restricted across the service network – a fact that also exists 
in public transport generated data.   
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Source Service Quality Cost of collection Representative 

Survey - Household All transport modes High High 
High (require 
decent sample) 

FCD Taxi Medium Low Medium 

FCD 
Individuals 
(Smartphone app GPS) 

Medium Low High 

Smart ticket Bus, Metro High Medium Medium 

User profile 
Monitoring 

Bike-sharing, car-
sharing, e-scooter 
sharing 

High Low Medium 

Table 11. Data sources for disaggregated data collection 

5.3. Traffic simulation tool required for fleet management: Aimsun Ride  

This section introduces the simulation platform Aimsun Ride designed for the deployment and evaluation of the 

shared-mobility services. The platform was designed as a plug-in inside the Aimsun Next software (Aimsun, 2020) 

and has been improved and extended for the scope of the MOMENTUM project.  

Traffic simulation is an important means with which to evaluate and optimize the design of complex transport 

applications in a timely and efficient manner. Within this project, a simulation platform is implemented to model 

and analyse system performance due to the introduction of new shared mobility applications. The Aimsun Ride 

simulation platform for shared-services is an advanced tool aiming to enable cities to deploy and test various 

scenarios related to new shared mobility applications (such as Demand Responsive Transport (DRT), car-sharing, 

bike-sharing and car-pooling). Scenarios can be defined and evaluated in order to explore different aspects of the 

provision of a mobility service. The investigated aspects can be related to both the fleet operators as well as the 

users of the system. For example, at the fleet operator level the platform provides the possibility for assessing 

alternative trip plans. At the user level different preferences and expectations on the system´s level of service can 

be investigated.   

5.3.1. Methodology 

The simulation platform Aimsun Ride executes the requests for new services (which have been estimated by the 
mode choice model) according to the optimised trip plans provided by the fleet management planning algorithms. 
The trip plans consist of a list of steps to arrive from an origin to a destination. Moreover, the fleet management 
operator feeds the service demand simulator with information related to the supply representation of the 
operator´s fleet that will be used to serve the requests. For instance, the number of vehicles in the fleet, number 
and locations of stations for bike-sharing and station-based car-sharing, etc.  

A request is made by an individual to be transferred from point A to point B. Every request can include constraints 
based on the individual´s needs and preferences (e.g., accessibility, departure and/or arrival time windows, 
walking distance thresholds, etc.). These constraints are taken into consideration by the fleet management 
operator algorithms. Subsequently, the optimised trip plan by the operator is passed into the simulator for 
execution. Following, the simulator provides travel information to the fleet management operator to calculate the 
best routes of its vehicles. After each scenario execution, the simulator communicates with the fleet management 
algorithm in order to provide the operator with adequate KPIs so as to evaluate and re-optimise the process. 
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In the following subsections, the input and output files related to the developed service simulator are briefly 
described. More details regarding the format and structure of the input and output files will be provided in WP5, 
where the proposed framework will be implemented. The developed service simulation framework considers path 
costs (e.g., path travel times) which can be obtained either from a simulation or provided externally. The different 
path costs possibilities are summarised later in this document. Finally, in the last section the main KPIs that 
provided by the simulator are presented.  

5.3.2. Input files  

The main input files for the service simulation platform are related to the service requests and operator’s 
information. The files should be provided in JSON format. 

In particular, the requests file has a collection of fields related to the requests to be executed during the 
simulation. Besides the information with respect to each trip (i.e., origin, destination, departure time, etc.), each 
request can include several user-defined fields that are, in turn, provided to the operator as additional attributes 
(e.g., accessibility constraints for specific individuals, walking time constraints, etc.). However, they are not 
considered by the simulator. The operator file includes information about the specific service operator that is 
being evaluated (e.g., car-sharing, DRT, etc.) as well as the fleet specifications. These specifications can be, among 
others, the vehicle type (e.g., bus, taxi, bike, etc.), origin position of the vehicles, number of seats in each vehicle, 
etc. 

5.3.3. Output files 

After an execution, the simulation platform will produce a file with all the events executed as well as an optional 
recording file to visualize the simulation. The events file is a binary file that can be exported to JSON format, which 
will contain a list of events (see Figure 22) with information for the different event types that have been executed 
(either for a request or a vehicle in the fleet). This information is related to the state of a request or a vehicle 
executing it, the position and used capacity of vehicles, the path chosen. 
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Figure 22. List of event types characterised by a unique icon 

5.3.4. Path cost calculation 

The developed simulation framework provides a path calculation interface that can be used by the fleet 
management operator to calculate the optimal routes of its vehicles aiming to minimize the costs. The interface 
provides the flexibility to calculate the most efficient routes for executing the requests, in terms of the prevailing 
travel times inside the traffic network, based on three possible sources: 

1. Free flow conditions 
2. Simulated travel times obtained from a traffic assignment model 
3. Historical travel times 

The selection of the approach for obtaining the path costs depends on the assumptions made about the effect of 
the demand for new services on the network traffic conditions. Specifically, travel times based on free-flow 
conditions may be assumed for modes and services that do not interact with traffic (e.g., walking or to some extent 
bike-sharing systems). Hence, this approach does not require a network loading. 

The low demand penetration scenario, which is one of the two demand scenarios considered in the project, 
assumes negligible or no change in travel times due to the introduction of demand for the new mobility services. 
In that case, historical travel times obtained from a previous static assignment model or based on the available 
travel time observations, can be used and considered fixed in all fleet management scenarios. Also, in this case no 
simulation of the network demand is required in order to obtain the travel times. 

 On the other hand, in the high demand penetration scenario, the network traffic conditions are assumed to be 
affected due to the increase in demand for the new services. For this scenario it may be necessary to update the 
travel times by performing a new traffic assignment. The simulated travel times can be obtained by performing a 
traffic assignment using multiple traffic flow resolutions, namely, microscopic, mesoscopic, or macroscopic. The 
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simulator will then pass the updated travel information obtained from the simulation to the operator. Several 
iterations between the simulator and operator might be needed in order to converge to an optimal solution. 
Different functions are implemented to obtain the travel times between an origin and a destination point using a 
specific mode. Moreover, travel times for the fleet can be also calculated from the position of each vehicle to the 
destination point.  

Furthermore, the path costs calculation interface can be used to calculate routes for other existing modes, such 
as walking and Public Transport. 

5.4. Modelling and simulation of fleet management for shared mobility 
services 

As mentioned above, the Fleet Management module is separated into two sub problems: the planning and the 
operational. That discretization is necessary as the methods to handle each one significantly differ. Indeed, 
planning methods can be solved with the use of multi-objective optimization and/or station-based heuristics, 
while operational problems can be treated with online Traveling salesman problem (TSP), Approximate Dynamic 
Programming (ADP), and Reinforcement Learning on Markov Decision Processes (MDP -RL). That categorization is 
illustrated in Figure 23, along with the mostly used solution methods to handle the aforementioned problems. 

 

Figure 23. Fleet Management Methods 

5.4.1. Algorithms for fleet management planning  

The scope of planning on-demand transport services is to design flexible, affordable and responsive infrastructure 
for a user, in parallel with a profitable and sustainable business model. Especially, planning studies aim to find the 
econometric equilibrium that try to fill the gap between demand and supply in an optimal way. Thus, the most 
important stage is to design an objective function that contains all the revenue flows involved in the systems. As 
presented in Table 12, there are two types of costs, which are related to the performance of the service; the 
customer cost in terms of time, and the operators’ costs which mostly related to salaries, vehicle and system 
maintenance (vehicles, software, etc.) costs. The customers’ time related costs encapsulate the waiting time, the 
access time, the trip duration, and the acceptance probability. Therefore, poorer transport networks or insufficient 
fleet impose negative effect on the objective function as the waiting time, access time or acceptance probability 
will be high. In contrast, operator’s cost embodies vehicle costs such as 1) purchase and maintenance of vehicles 
and the service software, 2) operation costs involving fuel consumption, renting public space or cloud computing 
expenses, and 3) utilization costs. While large networks and surplus fleet can result in higher service levels (low 
customer costs), the operational costs can start to rise, due to the resource expenditure. To conclude, the optimal 
network parameters must consist of both customers’ and operator’s point of view during the econometric 
equilibrium estimation process, to achieve a global optimum solution that makes the service prosperous for both 
the society and the service provider (Salanova and Estrada, 2015, Estrada et al. 2011). 
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Cost Feature Description Unit. 

Access Duration The time each customer needs to get access to service Minute 

Waiting Duration The time a customer needs to reach a stop  Minute 

Trip Duration Service The trip duration using the service Minute 

Total Trip Duration The total trip duration with the use of the service Minute 

Accepted/Total The ratio of requests accepted from total request - 

Vehicle Fixed Cost The fixed cost of each vehicle (Purchase, maintenance, driver) € 

Vehicle Operational Cost The costs of the operational prosses € 

Vehicle Utilization The average occupancy of each vehicle - 

Table 12. Cost features of planning module 

There are two approaches that could handle such problems and there is a need to combine them:  

• Formulating the problem as Multi-Objective optimization problem and approximating a solution with 
heuristics-like evolutionary algorithms.  

• Generating an initial solution with many available resources and a large network, and during simulation 
episodes, eliminating them by taking a subset of the primal solution.  

The first approach uses the costs detailed in Table 12 in the objective function, Equation (20), which relates to 
those with environment parameters. For instance, larger number of stops in a demand responsive transport must 
be negatively correlated with the walking, access and in-vehicle times. However, it needs to take as an input, a set 
of parameters like the candidate stops or the estimated walking distance and duration for a passenger to reach a 
stop. The second approach will also help by using object (stops, vehicles, docks) values in order to support the 
optimization algorithm to better converge on the optimal solution. In that setup, the sets of Requests and Trips 
refer to passengers, while Routes refer to vehicles.  

 

𝑚𝑖𝑛
 

𝑓(𝑠𝑦𝑠𝑡𝑒𝑚) =   ( ∑ Access Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

  +   ∑ Waiting Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

 

+ ∑ Trip Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

) × 𝑉𝑎𝑙𝑢𝑒 𝑂𝑓 𝑇𝑖𝑚𝑒

+ ∑ Rejected Request𝑖
∀ 𝑖 ∈ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

× 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖                               

+ ∑  

∀ 𝑗 ∈ 𝑅𝑜𝑢𝑡𝑒

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑗   × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗 ÷ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗         

+   ∑ Fixed Cost𝑗 ×  Driver𝑗

∀ 𝑗 ∈ 𝑅𝑜𝑢𝑡𝑒

× 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗   ÷ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗          

+ ∑ f ( Distance 𝑗 ,

∀ 𝑗 ∈ 𝑅𝑜𝑢𝑡𝑒

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 )  × 𝑓𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒         

(20) 

 

The starting supply parameters are defined by the disaggregated demand of origin and destination samples. As 
described in D3.3, those data can be processed with spatial clustering techniques like K-Means or DBSCAN. For 
instance, in the K-Means algorithm, the number of clusters can correspond to the stops (or the candidate stops) 
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of the DRT/Bike-sharing/Ridesharing/ Carsharing service. In fact, small customer cost flows require large number 
of clusters along with large fleet. Instead, restricted fleet and infrastructure expenses assume fewer number of 
stops, and shorter trip durations. To conclude, the process to define the initial system resources follows the 
workflow in Figure 24 and include 1) the desired parameters definition, 2) the algorithmic processing that depends 
on the transport mode, and 3) the output which has all the parameters needed for the simulation. 

 
Figure 24. System parameters initialization 

The last step is to design a heuristic optimization process which uses the objective function, Equation (20), and an 
object-based function to compute the next planning parameters to be simulated. Explicitly, the object-based 
function must provide metrics for all parametrized variables of the simulation, such as stops, docks, vehicles, and 
bikes. That function must aggregate performance related metrics similar to those in Equation (20). For instance, 
in DRT each stop would have a value that measures the average walking distance or the proportion of customers 
it serves. Therefore, it can be used as a criterion to evaluate if that stop must be eliminated or aggregated with 
another one. More details about the planning optimization procedure will be provided in the following chapters. 

5.4.2. Algorithms for fleet management operations 

The main problem of on-demand services is that they must handle dynamic and usually stochastic vehicle routing 
problems. Dynamic stands for the fact that the information about new requests is usually revealed as the vehicle 
is already on the move (online). Stochastic terms are caused by uncertain factors, such as congestion events or 
requests that are eventually rejected. Additionally, these services require both pick-up and delivery operation, 
either for the resources (bikes) or the customers (in case of ridesharing). There are many aspects of the problem 
that may have to be optimized via an operational model, but the most common aspects are the waiting time and 
the number of customers that will be served. Particularly, on-demand routing focuses on minimizing the waiting 
time, as well as maximizing the number of accepted requests. Moreover, the mathematical models must include 
the vehicle capacity constraints, time-windows constraints, and the vehicle availability (to reject a request, in case 
of non-availability). Lastly, there can be multiple depots and many vehicles, and the problem is called multi-depot 
and vehicle routing problem, rather than traveling salesman problem (Psaraftis, 2016). The most promising 
solutions for those problems are: 
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• The Waiting Strategies. This strategy focuses on the decision whether to start a route or wait for more 
requests to occur. For instance, if a there are few requests the route would have low utilization (e.g., 
passengers/km), so the route would be less profitable. In contrast, if the dispatching process waits too 
long, it may induce some customers to reject their trips. Thus, the critical decision that needs to be made 
is the period that the vehicle must stay immobile to maximize the number of served requests and 
minimize the waiting time. Those strategies are combined with TSP solutions and heuristics to create the 
optimal routes. 

• The First Come First Served Strategies. These strategies are usually named also as queueing-pooling 
strategies. In fact, the system is described as multiple queues and one or more vehicles that serve requests 
on those queues.  

• The Markov Decision Processes (MDP) and Approximate Dynamic Programming (ADP) Strategies. The 
last two strategies have a lot of similarities and methods in common. Modelling the problem as MDP is a 
useful formulation to apply ADP or neuro-DP algorithms. Especially, those methods provide powerful and 
efficient techniques to handle dynamical problem, as the Dynamic vehicle route problem or the dynamic 
resource allocation problem. Moreover, there are also solutions that combine MIPs with algorithms to 
approximate the value function with the use of the dual values of MIPs. In parallel, modern methods for 
those formulations are called Reinforcement Learning (RL), and these methods provide a very powerful 
framework to get optimal decisions in those problem instances (Sutton, 1998). With the rise of AI and 
Deep Learning methods, Deep-RL algorithms face a lot of popularity due to their ability to generalize and 
learn efficiently complex demand distribution. To give a brief illustration, the process of on-demand 
transport is modelled with the State-Action-Reward functions. More precisely, State contains all the 
information about the systems state, such as the position of open requests, the time each customer waits, 
and the vehicle position and capacity. A Neural Network (NN) can process that state and return as an 
output the best Action. That Action is passed into the simulation system and the simulation system returns 
the Reward and the next State. Therefore, the goal of simulation runs is to approximate the value function 
𝑉(𝑆𝑡) which evaluates the value of each state, and guide policy improvement algorithms to maximize the 
expected profit (refer Figure 25). Finally, in the case of transport problems it is useful to form the input 
requests as graph related entities and make use of Graph NNs to process the state and produce actions. 
The interaction with shared mobility simulation platform, Aimsun Ride, is illustrated in Figure 26. 

The Waiting Strategies (WS) and FCFS (First Come First Served) are easier to integrate and implement into a micro- 
simulation while RL methods require a lot of iterations to train a reliable agent which is computationally expensive 
in case of large network instances. Thereby, during MOMENTUM fleet management operational task uses the WS 
and FCFS strategies as it can overcome computational complexity issues. However, the RL framework could be 
tested in a macro or meso simulation set up to see how it performs.  

 

Figure 25. Reinforcement Learning State Action Reward flow 
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Figure 26. State-Action-Reward flow between Fleet Management and Aimsun Ride 

5.4.3. Fleet management KPIs estimation using shared mobility service simulation 

The Key Performance Indicators (KPIs) are important and need to represent the overall service performance as 
good as possible. Most of them already were presented in the previous section, as they play key roles in both 
planning and operational optimization processes. Nevertheless, when the optimization task is over it needs to 
extract some KPIs that reflect the expected system performance and compare them with the results that were 
generated in the real-life testing. Moreover, those KPIs used in the objective are more user-centric, and hence, 
they need to be aggregated in a more general form. Table 13 presents those KPIs. 

KPI Description. Unit. 

Average Vehicle Utilization 

It measures the ratio of 
passengers in each vehicle to the 
vehicle capacity. The goal is to 
maximize that ratio. The service 
needs to utilize resources as much 
as possible. 

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  ×  𝑅𝑜𝑢𝑡𝑒
 

Average Waiting Time 

Represents the average waiting 
time for a user. More specifically, 
the metric does not include the 
access time. It measures only the 
time during which the customer 
has reached the point (stop or 
dock) and the resource is not 
available. The goal is to minimize 
this KPI. 

𝑀𝑖𝑛𝑢𝑡𝑒𝑠

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
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Average Service Duration 

Represents the average trip 
duration for a user. More 
specifically, the metric includes 
the duration of actual service 
usage. It measures only the time 
that customer is in-vehicle or use 
it. The goal is to minimize that KPI 
while maximizing the 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑖𝑝 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
. 

𝑀𝑖𝑛𝑢𝑡𝑒𝑠

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
 

Average Access Duration 

Represents the average time for a 
user to reach the service. More 
specifically, the metric includes 
the walking time and the time 
spent using other means of 
transport. The goal is to minimize 
this KPI. 

𝑀𝑖𝑛𝑢𝑡𝑒𝑠

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑖𝑝 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

The proportion of duration the 
passenger spends, using the 
current service. 

- 

Number of accepted requests. 

Indicates the estimated 
proportion of accepted requests. 
The goal is to maximize this KPI. 

- 

CO2 emissions 

Evaluates the average CO2 
emission for a trip. The goal is to 
minimize this KPI. 

𝐶𝑂2 𝑘𝑔

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
 

Area 
Represents the area (𝑘𝑚2), in 
which the service operates. 

𝑘𝑚2 

Population 
Indicates the population of the 
served area. 

Citizens 

User cost 
Indicates the average cost for a 
user. 

𝐸𝑢𝑟𝑜

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
 

Operator cost 
Indicates the average cost per 
passenger for the operator. 

𝐸𝑢𝑟𝑜

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟  ×  𝑅𝑜𝑢𝑡𝑒
 

Table 13. List of KPIs for fleet management planning and operational applications 

5.4.4. Algorithms for planning and operation of Demand Responsive Transport – DRT 

Demand Responsive Transport (DRT) is referred to describe a service, usually governed by public authorities, that 
aims to provide affordable and on-demand trips using medium size vehicles. Specifically, DRT vehicles are between 
taxi, which is a fully on-demand service, and a public bus or metro line, which operates according to a schedule. 
In fact, DRT adopts the stop-based model of public bus system and the on-demand request features of the taxi 
services. In that way, DRT can be more flexible, as it relies on people’s needs in parallel with the scalability derived 
from the large capacity of the vehicles. The requests can be booked either in advance or during the time when the 
vehicle is on the move. Each request includes the origin, destination, and time-window information. The operator 
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needs to manage those requests along with the online dispatching of the vehicle. Especially, such services fit better 
in ex-urban, sparsely populated and poorly supported by public transport areas, or even in disruption 
management, which usually occurs in case of traditional fixed bus or metro lines due to technical failures. Thus, 
DRT mainly focus on connecting areas (where traditional transport is not efficient) or emergency situations within 
the core urban areas and is relatively quicker than public transport and more affordable than taxi services (see 
Figure 27). 

 
Figure 27. Demand Responsive Transport role in transport services 

As discussed extensively in D3.3, the first step of designing a DRT service is to analyse mobility and public transport 
network data to detect the areas that are more suitable to implement it. Once those areas are specified, the 
planning procedure starts. The DRT service must provide an online booking platform that allows users to post their 
trip requests. The operator collects those requests and use them to generate the trips. While vehicle is on move, 
the operator can decide whether a re-routing is needed or not according to the online requests it receives. The 
main decision that must be taken is when to start a route or how long the vehicle must wait. In other words, there 
is a trade-off between the waiting time and the route efficiency, considering that more reactive routes will lead 
to less occupied vehicles with decreased capacity and energy utilization per km, as presented in Figure 28. 
Moreover, since the service could possibly have a lot of stops (>60), VRP (Vehicle Routing Problem) solvers could 
be set to pre-assign stops to mini-busses and the online optimization algorithms could be used for each route 
separately. Lastly, the system must assure that those passengers can use the same service to return where their 
first route started as most of the trips usually start from users’ houses. 

 

Figure 28. Impact of online and time constrained requests 
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5.4.4.1. Planning 

As previously discussed, Demand Responsive Transport adopts the station-based system of the bus transit system. 
In fact, DRT aims to develop a bus network in areas with poor transit network support and fill the gap between 
on-demand responses and affordable pricing. Hence, DRT stops locations is one of the most important factors as 
the system try to serve as many users as possible, even those in solitary neighbourhoods. The second important 
system resource is the vehicles that perform the operations. The following methodologies will provide a detailed 
illustration of how the fleet management tool and shared mobility service simulation platform, Aimsun Ride, will 
cooperate to help operators decide which resources are needed to achieve the given service levels, which need 
to be defined first. Namely, the transport planner needs to define some constraints on the system, such as the 
maximum walking distance/duration of a candidate passenger or the maximum route duration. The objective 
function in Equation (20) remains the same, while all elements are held for the DRT case. In that setup, the sets of 
Requests and Trips refer to passengers, while Routes refer to vehicles.  

 Access Duration Waiting Duration Trip Duration Route Distance Utilization 

Number of Stops + - -  + 

Vehicles. No impact. + + + - 

Table 14. Impact of Decision variables to Objective function. 

The decisions the transport planner has to make are the desired maximum distance, the distance of the DRT stops 
from each customer and the maximum route duration for each vehicle. In Table 14, the impact of increasing the 
value of those decision variables is presented. For example, larger number of stops lead to a more accessible and 
efficient network, while the waiting time and trip duration increase. Thus, the maximum distance criterion could 
be used as a good starting point for searching the optimal combination of stops rather than the final solution. The 
Algorithm 1 (Figure 29a) is used to compute the initial number of clusters in the initial setting. In brief, the 
algorithm increases the number of stops (clusters) until all the stops have walking distances smaller than the 
decision parameter. To evaluate the number of stops that satisfy the maximum distance criterion the Equations 
(21) and (22) are used. The output contains the DRT stops coordinates that will be inserted in the first round of 
simulation experiments.  

 𝑃(𝑆,𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = ∑ 𝑀 × 𝐷𝑖𝑠𝑡(𝑠𝑖) 

∀ 𝑠𝑖∈ S

 
(21) 

 

 𝐷𝑖𝑠𝑡(𝑠) = {
𝑚𝑎𝑥(𝑑𝑖𝑠𝑡𝑗) ∀ 𝑑𝑖𝑠𝑡𝑗 ∈ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝒊𝒇𝑚𝑎𝑥(𝑑𝑖𝑠𝑡𝑗) > 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 1/𝑀                                                                                                       𝒆𝒍𝒔𝒆
   

(22) 

 

Given that set of stops, the next step is the initialization of the number of vehicles that need to operate in order 
to satisfy the maximum route duration criterion. That task is performed via Algorithm 2 (Figure 29b) which takes 
as input those stops along with the desired route duration and returns both the number of vehicles and the set of 
stops assigned to each vehicle. The evaluation-2 function in Figure 29b is a trivial method that evaluates if each 
vehicle satisfies the maximum duration criterion. Given the setup of the first round of simulations, those system 
parameters must be tuned and optimized as experiments proceed. The mechanism must be based on merging or 
division of stops according to their performance.  
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Figure 29. DRT a) stops location (Algorithm 1)  b) route duration (Algorithm 2) 

The evaluation of the impact of the stops and the arcs connecting them are based on Equations (23) and (24) 
respectively. Equation (23) calculates the average access and waiting duration of each stop based on the trips that 
used that stop as an origin point. Hence, lower values indicate higher levels of service. In parallel, Equation (24) 
evaluates the frequency of using the arc between stops 𝑖 𝑎𝑛𝑑  𝑗. In fact, lower usage of one arc could be used as 
a proxy to evaluate if those two stops could be merged into one. The rule goes as follows: if two stops have 
relatively high service level and the arc that connects them has relatively low frequency, those two stops could be 
merged into one. The new stop can be located at the centre of those two previous stops.  

 
 C(𝑠𝑡𝑜𝑝𝑖) =  

∑ Access Duration𝑖∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝𝑆   +   ∑ Waiting  Duration𝑖∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝𝑆  

3 |𝑇𝑟𝑖𝑝𝑆|
  ∀ TripS

∈ { Trip|Trip ∈ Stopsi} 

(23) 

 

 𝐴(𝑠𝑡𝑜𝑝𝑖𝑗)  =  
∑ 1∀ 𝑖 ∈ 𝐸

|𝑇𝑟𝑖𝑝𝑠|
, 𝐸 ∈  {𝑇𝑟𝑖𝑝 |  𝑠𝑡𝑜𝑝𝑖𝑗 ⊆  𝑇𝑟𝑖𝑝} 

(24) 

 

In case a stop has large queues or a large value of Equation (23) and so the arcs which destinate in that stop, it can 
be divided into two smaller stops based on the spatial distribution this stop has. The actual number of stops that 
will be merged or divided in each iteration depends on the threshold ‘n’ which can be defined by the software 
user. For instance, if n = 1, at each simulation experiment the algorithm will choose the arc that is ranked as better 
for merging, according to the equations mentioned above. Similarly, for the case of division, the most popular 
stop will be divided into two smaller stops. Once the new set of stops is ready, the Algorithm 2 (Figure 29b) takes 
place to compute the new set of vehicles and the assignment of station for each one. As this process moves on, 
the objective function, Equation (20), evaluates each setting. At the time it finds a minimum, the simulation 
experiments break, and the set-up, along with the KPIs of the Table 13, are presented to the transport planner. 
The diagram in Figure 30 illustrates that optimization workflow.  
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Figure 30. DRT planning optimization workflow. 

5.4.4.2. Operational 

DRT services fall in the routing category of the Dial-a-Ride problem (DARP). In fact, DARP is a special case of Pickup 
and Delivery Vehicle Route Problem (PDVRP). The core difference lies on the pickup and delivery locations, that in 
case of DARP are predefined from the passenger, while classical PDVRP has a set of stops that vehicle can pick up 
units and a set of delivery points, so there are no constraints of which origin must serve one destination (Häll, 
2009).  Additionally, the system assumes that each request will arrive before the trip starts a route. Therefore, if 
route duration is 20 minutes, the waiting time of each customer is 20 minutes at most. The following model 
consists as a general solution in PDTSP problem, which could be used both for DARP and rebalancing purposes.  
Indeed, the same algorithm will be used in the case of bike-sharing and car-sharing rebalancing in the BS section. 
However, the final experiments will also consider and evaluate a more straightforward formulation of DARP, such 
as the one proposed by Cordeau (2007), which is closely related with the current solution. The model formulation 
consists of the following variables: 

• G = {V, A}, Graph with the set of stops V and the set of Arcs (connecting the stops) A.  

• 𝑥𝑖𝑗 = {
1, 𝐼𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑖 𝑡𝑜 𝑗 

0, 𝑒𝑙
 

• 𝑓𝑖𝑗  ≥ 0, 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 

• 𝑞𝑖 = {
> 0, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 ℎ𝑎𝑠 𝑎 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑝𝑖𝑐𝑘𝑢𝑝 𝑜𝑓  𝑞  𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠,

 
< 0, 𝑒𝑙𝑠𝑒.

 

• Q = Vehicle Capacity.  

Thus, that MIP of PDVRP problem is formulated as follows: 

Model 1: MIP – PDTSP 

 min
 

∑ ∑ 𝑐𝑖𝑗 ∗ 𝑥𝑖𝑗

 𝑗 𝜖 𝑉𝑖 𝜖 𝑉

 
(25) 

 

 s.t.:                                                     ∑ 𝑥𝑖𝑗 𝑖 𝜖 𝑉   = 1  , ∀ 𝑗 ∈ 𝑉   

(26) 
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 ∑ 𝑥𝑗𝑖 𝑖 𝜖 𝑉   = 1  , ∀ 𝑗 ∈ 𝑉 

(27) 

 

 ∑ 𝑥0𝑗 𝑗 𝜖 𝑉   < m  

(28) 

 

 ∑ 𝑥0𝑗 𝑗 𝜖 𝑉   = ∑ 𝑥𝑗0 𝑗 𝜖 𝑉   

(29) 

 

 ∑ 𝑓𝑖𝑗 𝑗 𝜖 𝑉  - ∑ 𝑓𝑗𝑖 𝑗 𝜖 𝑉  = −𝑞𝑖  ,  ∀ 𝑗 ∈ 𝑉 

(30) 

 

 max
 

0,−𝑞𝑖 , 𝑞𝑗*𝑥𝑖𝑗 ≤  𝑓𝑖𝑗   ≤  min
 

𝑄, 𝑄 − 𝑞𝑖 , 𝑄 + 𝑞𝑗 ∗ 𝑥𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴 

(31) 

 

 ∑ ∑ 𝑥𝑖𝑗 𝑗 𝜖 𝑆𝑖 𝜖 𝑆   ≤ | 𝑆| - max
 

1, ⌈
∑ 𝑞𝑖𝑗 𝑖 𝜖 𝑆

𝑄
⌉ , ∀ S ⊆ V/ {0} 

(32) 

 

In that formulation, Model 1, the objective is to minimize the travel time for each route. In parallel, constraints in 

Equations (26)-(29) are typical for TSP models and ensure that vehicle will leave each station visited and it will 
finally return to the depot. Moreover, constraints in Equations (30) and (31) are the flow conservation constraints 
and ensure that the maximum capacity of the vehicle will not be exceeded. Finally, constraint in Equation (32) 
prevents the program from reaching a solution with subtours. The output provides the simulation with the final 
optimal path that must be followed to serve the trip requests.  

In summary, designing a DRT system requires the cooperation and communication among different techniques, 
such as transport simulation, clustering algorithms, and routing algorithms. In general, DARP is a well-studied 
problem in literature, while the planning schema does not face the same popularity. However, the present section 
shows that, given a sequence of requests with origin-destination and the time-windows, the proposed process 
can be used along with the shared mobility service simulation platform, Aimsun Ride, to search in a more 
systematic way for the optimal DRT resources. In addition, the methods developed are already well studied across 
different scientific fields. Thus, these methods can be easily extended and enriched with other instances of those 
algorithms. To conclude, this section illustrates a framework that interacts with the Aimsun Ride, shared mobility 
service simulation platform in a 2-stage analysis and supports rational decision-making processes for planning DRT 
services.  

5.4.5. Algorithms for planning and operations of ridesharing service 

The first on-demand service introduced in the urban mobility environment involves the taxi service, further 
indicating its long-term existence and thus, attracting the interest of the academic community. While the initial 
research efforts on taxi services focused mainly on their design, planning and control under profitability 
maximization objectives, new research efforts moved further into the development of multi-objective 
optimization methodologies that considered additional parameters, such as passengers waiting time, cost of trip, 
demand, trip distance and duration, value of time and willingness to pay. However, as modern cities tend to get 
overcrowded, problems, such as congestion or high levels of carbon dioxides, arise. Thus, the sharing economy in 
transit sector is emerging as it could help to encounter those challenges efficiently. Especially, ridesharing forms 
one of the best practices in sharing economy due to low cost and trip duration features that it offers. In that sense, 
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RS refers to the service wherein car owners or professional taxi drivers can provide shared trips to commuters, 
whose desired origin, destination, and time-window preferences are relatively close. In fact, RS is preferred in 
densely populated areas where citizens perform a vast number of trips, so there are a lot of cars and/or taxis trips 
that ensure the appropriate supply levels for the passengers. In contrast to DRT services, which focus on sparsely 
populated ex-urban areas, RS try to take advantage of the rich trip activity of urban areas. Moreover, RS service 
business models can be discretized in 3 categories, as Table 15 presents: 1) Matching agent, 2) Service provider, 
and 3) Hybrid.  

Business Model Resources Scope Optimization Task 

Matching Agent Private cars 
The role of the operator is to 
match car owners with 
passenger requests. 

Maximize the accepted 
requests. Utilize as much 
private cars as possible. 
Balanced routes. 

Service provider Taxi fleet 
Assign passengers to trips with 
respect to sharing objectives. 

Maximize the accepted 
requests. Utilize the taxi fleets. 

Hybrid 
Private Cars + Taxi 
fleets  

Matching operator with 
outsourcing choice of taxi fleets. 

Maximize accepted requests. 
Use private car at most and 
minimize the outsourcing 
requirements. 

Table 15. Ridesharing models 

The hybrid model is the most general one; hence, this study will focus on it as it is also the most realistic one. 
Indeed, matching model has the problem of demand and supply. More precisely, higher demand requires 
significant levels of supply (private cars) and vice versa. Thus, it is difficult to design a system that is based on 
private cars only. On the other hand, service provider model needs either large investments on fleet or increased 
operational expenses in renting the taxi drivers. Therefore, the hybrid model fills the gap as it tries to exploit the 
private cars as much as possible, ensuring that there is a fleet that could always serve the demand in case of supply 
shortage. 

Another major issue in RS services is the ridesharing pattern the system follows. Those patterns can be 
summarized in four main categories according to Furuhata (2013). Those differences can have a significant impact 
on the overall system performance and each pattern require different algorithmic approach. Inspired by that 
categorization, this study generalizes those patterns into four new clusters that fit better the objectives of the 
MOMENTUM project. Those four categories are presented in Figure 31 and can be summarized as :: 

• Pattern-1 (identical ridesharing): In that pattern, both origin and destination of all trip participants in a 
shared route join and leave the car at the same point. Thus, the trip contains commuters that have the 
close origins and destinations. 

• Pattetn-2 (Inclusive ridesharing): In that case, the passenger’s origin and destination are on the driver’s 
way. Therefore, the driver must have, at least, two stops during the trip (in case of one passenger, one 
pickup stop and one drop off).  

• Pattern-3 (partial ridesharing): In that category, either pick-up or drop-off are same for all participants. 
That problem is also referred as one-to-many or many-to-one RS.  

• Pattern-4 (detour ridesharing): The final pattern stands for the case in which the driver makes a detour 
to find the path that best serves all passengers assigned to that trip.  

All those patterns have some advantages and weaknesses. For instance, if the service operates according to 
Pattern-1, it significantly limits the set of possible candidate passengers. Consequently, the service will need to 
withhold larger fleets of taxi via outsourcing. However, drivers avoid pick-up or drop-off stops, so then the route 
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duration reduces, and the trip becomes more convenient for drivers. In contrast, pattern 2 can lead to reduced 
taxi outsourcing costs, but higher trip durations with pick-up and drop-offs between drives origin and destination. 
Figure 31 provides a quick summary of that trade-off. 

Pattern 
Driver – Trip 

duration 
Passenger 

Trip Duration 
Passenger Walking 

Distance 
Matching 
Efficiency 

Driver’s Convenience. 
(less stops, detours) 

1 +++ +++ +++  +++ 

2 + +++ ++ ++ ++ 

3 + +++ ++ +++ + 

4 - +++ +++ +++ - 

Table 16. Impact of RS patterns along different system variables (Very Positive: +++, Positive: ++, Medium: +, Negative: -) 

 

Figure 31. RS patterns 

5.4.5.1. Planning 

The planning process of RS service is not a trivial task. In fact, the first problem arises in the fleet size and the 
maximum number of customers that could share a trip. In case of private cars and taxis, that boundary is limited 
to 4 people. However, the main difficulty is to estimate that number of vehicles that must be available. In reality, 
those services start to operate with a specific number of vehicles and, as time passes, more driver (supply) enter 
the system. Thus, in the early stages of the service, it could be assumed that most of the vehicles will come from 
rental taxi fleets. In the course of time, as more drivers join the service, the increment of supply drives the demand. 
This is a closed loop dynamical phenomenon though, so as the demand increases the supply also follows that 
trend (positive loop). Consequently, the service starts the operation with minimum earnings (possibly with losses), 
but as the time passes and the proportion of private cars increases the profits also increase.  

In that case, the simulation could be used in order to see how different mixtures of private cars and fleets could 
serve several demand scenarios. Especially, the simulation and planning iterations will be used to estimate the 
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optimal fleet size that is needed to serve the demand of each scenario. Additionally, the RS pattern will vary along 
the scenarios to evaluate each strategy and make sure that the system performs in a convenient way both for the 
driver and the passengers. Finally, the simulation uses two different setups:  

• The first one considers that the fleet size is predefined, and hence, the objective is to define the optimal 
size.  

• The second considers that it has a specific supply of private cars, so it tries to find the optimal RS strategy 
via taxi outsourcing.  

The objective for that task differs from objective in Equation (20) as more stakeholders are involved in the system. 
There is a set of Drivers’ Routes (DR), Passengers’ Routes (PR) and Outsourcing taxi fleet (OTF) routes. The RS 
objective function in Annex A3, contains time relate costs of both drivers and passengers, vehicle maintenance 
costs, outsourcing costs, fuel costs and private car payments.  

The next step is to define the fleet size that is needed to serve the demand. Similar to DRT, the fleet size is an 
estimation, so during experiments it will be adjusted according to optimization techniques. The first round of 
experiments assume that all the requests will be accepted. The assignment step is performed via the algorithm 
presented in the Operational section. Moreover, the assignment uses a 3-step procedure which firstly assign 
passengers to trips based on Pattern-1. Then, the subset of unserved demand uses the Pattern-2 and, finally, those 
who do not match with any driver are assigned to shared taxi trips. While all costumers are assigned to trips, the 
hourly supply need to be extracted. Finally, the fleet size of the most popular hour of day (the hour that needs the 
more vehicles) is considered as the initial available fleet. 

 

Figure 32. RS fleet size (Algorithm 3) 

In that sense, the only resource of the system is the available vehicles. Given that the starting fleet size is 
overestimated, the following planning optimization starts eliminating vehicles. When the algorithm (Figure 32) 
finds a size for which the losses from unserved customers are equal to the vehicle expenses, the process stops and 
returns the fleet size. In parallel, planning routine searches for the optimal Pattern to maximize the profits with 
respect to predefined service levels. 

5.4.5.2. Operational 

Ridesharing problem (RSP) exists as a special case of the Dial-a-Ride problem (DARP), which in general falls into a 
bigger category of Pickup and Delivery Vehicle Route Problem (PDVRP).  A typical PDVRP considers a graph, 𝐺 =
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(𝑉, 𝐸), where V is the set of nodes (all the possible pickup and delivery places) and E stands for the set of edges 
that connects those nodes. In that general case, vehicles can perform pickup or deliveries actions at every node. 
Hence, the problem faces a large state space due to many degrees of freedom. Carpool stands as a relaxation of 
PDVRP in terms of each vehicle has a specific origin and destination node and each client must arrive at the same 
destination node. In that way, there are not too many states which the algorithm must take into account. 
Therefore, RSP is computationally intensive even for medium size problems and classical approaches cannot 
handle it. This app further reduces the dimensions and complexity of the problem by reducing the form in an 
assignment problem.  

As a consequence, that relaxation creates a lower bound of the optimal solution. To prevent a lower bound far 
from the true optimal a new feature is added in the feasible solution space. Each driver can pick one among three 
paths. Hence, the variables that decide for that are:  

 𝑥𝑖𝑗
𝑘  = {

  1 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑖 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑘 𝑎𝑛𝑑 𝑝𝑖𝑐𝑘𝑢𝑝 𝑡ℎ𝑒 𝑝𝑎𝑠𝑠𝑒𝑔𝑒𝑟 𝑗,
 

0 𝑒𝑙𝑠𝑒                                                                                                 
} 

(33) 

 

 𝑦𝑖
𝑘 = {

1 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑖 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑘,                                            
 

 0 𝑒𝑙𝑠𝑒                                                                                                 
} 

(34) 

 

The distance for each passenger to the closet point on the trajectory of each driver and each path are denoted as 

𝑑𝑖𝑗
𝑘 . Other parameters are: 

 𝐶𝑎𝑝𝑖 
  : The capacity of each vehicle.  

  𝑇𝑖
𝑘 : The total time that vehicle I needs from origin point to destination.   

 𝑃𝑖𝑗
   : Penalty factor in case that passenger j did not assigned on driver i.   

 𝑃𝑇𝑖𝑗
𝑘 : The time that driver i from path k needs to reach the passenger j.   

 𝑙𝑖
  : The latest time that passenger or driver have to be on destination.  

 𝑒𝑖
 : The earliest time it can start the route.   

The mixed- integer model that used to make the assignment is the following: 

 min
 

∑ 𝑇𝑖
𝑘 − ∑𝑃𝑖𝑗 

 ∑𝑥𝑖𝑗
𝑘

𝑘𝑖,𝑗𝑖,𝑘

 
(35) 

 

 s.t.                                                   ∑ 𝑥𝑖𝑗
𝑘

𝑗 ≤ 𝐶𝑎𝑝𝑖 
 𝑦𝑖

𝑘             ∀ i, k 

(36) 
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 ∑ 𝑦𝑖
𝑘

𝑘 = 1  ∀ i 

(37) 

 

 ∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑘  ≤ 1  ∀ j 

(38) 

 

 ∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑘  𝑑𝑖𝑗
 ≤ 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑊𝑎𝑙𝑘  ∀ j 

(39) 

 

  𝑇𝑖
𝑘𝑥𝑖𝑗

𝑘   ≤ |min
 

[(max
 

(𝑒𝑖
 , 𝑒𝑗

 − 𝑃𝑇𝑖𝑗
𝑘 + 1) − min(𝑙𝑖

 , 𝑙𝑗
 )) , 0 ]|   ∀ i, j, k 

(40) 

 

The objective function of the model, Equation (35), tries to minimize the total time for the driver. In parallel, the 
penalty vector tends to help that minimization goal by forcing the model to activate as many variables as it can. 
Constraints in Equations (36)-(38) ensure that each vehicle chooses only one path and each passenger is assigned 
to one vehicle at most. Constraint in Equation (39) defines the minimum distance that each passenger walks to 
reach the trajectory of the driver. Finally, constraint in Equation (40) is a compact and lightweight formulation of 
time windows limits that both passenger and driver should satisfy.  

Additionally, the penalty vector can be used as a learnable vector, which the service provider could optimize 
dynamically. For instance, the penalty vector can contain the age, gender, commitment to service, or purpose, so 
that passengers with the same profile are more likely to match. In case of dynamic requests, the algorithm 
searches for the vehicles with available seats and assign them into the most suitable vehicles, according to similar 
criteria used in the matching MIP. Lastly, those passengers who are assigned to those routes create a shared taxi 
trip. The same algorithm is also used for the case of taxi shared trips. Especially some of the passengers are 
considered as drivers (when the trip starts) and the rest of the process remains the same. 

5.4.6. Algorithms for planning and operations of bike-sharing service 

During the last decades, most city authorities started to adopt policies that encourage citizens –especially in urban 
areas– to shift a significant proportion of their trips into more sustainable and green transit modes. The bicycles 
are one of the most comfort modes that anyone could use for small trips (up to 6km)  in urban environments. In 
parallel, sharing economy trends start to leverage the rapid growth of bike road networks. Moreover, long and 
more dynamic tourist periods, seasonality trends, and similar patterns, lead some people to avoid investments in 
private vehicles. Therefore, the sharing economy and, especially, bike-sharing, stands as an excellent transit 
alternative. Among the advantages of the service, the affordability of trips, zero carbon footprint, healthy lifestyle, 
and congestion reduction are the most important. However, the planning, facility location and resource estimation 
of such a system it is not a trivial problem. Firstly, the planner must decide if the service will be using docks or not. 
A free-floating service is more convenient for users, but it is more difficult to redistribute the bikes to be available 
for the future users. On the other hand, a system with docks must be sufficiently dense so every user can have 
easy access to the system. Additionally, dock-based systems are easier to manage in term of demand prediction, 
redistribution, and monitoring.  

In general, the bike-sharing systems can be summarized (Figure 33) in three major categories:  

• Dock-based system: In that category, all trips must start and end in one of the available docks. Thus, each 
user needs to walk up to the nearest dock. Additionally, each customer needs to walk to the destination 
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after dropping the bike into the nearest node. The dock based system is useful to predict demand and 
flows in the network more accurately. Moreover, it is easier to design rebalancing strategies.  

• Free-floating system: In that case, no docks are included in the service network. In fact, usually the 
passenger can track the nearest bike via a smartphone app. Moreover, there are no restrictions on where 
the drop-off location of the bike could be, so it can go up to the destination point. However, most of these 
services have a restricted area in which the bike trip can take place. The demand forecasting and 
rebalancing operations are more difficult due to continuous search space.  

• Hybrid: In reality, dock less system is impractical. The most common operation model is a mixture of dock-
less and dock-based. In practice, most systems are dock-based, but the user has the option to drop the 
bike wherever it is convenient. In parallel, that schema uses pricing policies to encourage customers to 
make use of docks.  

In summary, the system design procedure involves both operational and planning decisions. The operational 
decision is related with category and pricing policy preferences. The planning decisions deal with the location of 
the docks, the capacity of each one and the size of available vehicles in the system. Then, the design process must 
provide guidelines about the redistribution strategy, for example when the operator must perform redistribution 
and the according routing methods. Lastly, system design requires data analysis that reveals the most suitable 
area for that service considering factors, such as the available bike network, origin-destination data analysis, 
weather, and topological conditions.  

 

Figure 33. a) Fully dock-based system, b) Hybrid system 

5.4.6.1. Planning 

The planning process is similar to the one described in previous sections. At first, the objective of the system must 
be defined. In that case, the systems costs can be split into two sets: 1) Passengers 2) Operations. The passengers’ 
costs involve access time, trip duration and waiting time. However, in case of hybrid model the waiting time can 
be eliminated as the customer has the choice to drop the bike outside the dock.  
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The objective function in Annex A3A4 contains   both the user costs and system management costs. Thus, that 
function is used to define the optimal design. Additionally, the planning stage should involve decisions on the 
actual location of the stations and the capacity of each one. Lastly, during experiments the rebalancing strategy 
varies in terms of interarrival time or inventory control parameters.  

At first, the process described in Figure 29 is used similarly to the DRT case, to define the candidate docks. 
However, the final set up depends on some service level parameters. . In fact, most literature studies propose 
some facility location models (in which they try to select the optimal subset of station candidates) with respect to 
specific service level constraints (Nikiforiadis, 2021; Junming, 2015). More precisely, those models also involve 
sets of decision variables related to demand coverage, area coverage and unbalanced stations (Frade, 2015). 
Consequently, in BS planning the goal is to find the optimal value of those decision variables that optimizes the 
overall performance of the system. After that, the methodology and workflow of Figure 30 is used to define a 
better location candidate for the next round of experiments until the optimal design found. Finally, simulation 
experiments are repeated for both dock-less and hybrid systems to distinguish which is more suitable for the 
target area.   

5.4.6.2. Operational 

The operational scale of BS is closely related with the pick-up and delivery vehicle route problem (PDVRP). In fact, 
during the day, the system is usually unbalanced, as some docks have shortage of bikes, while others have surplus. 
Thus, the operator must choose the optimal sequence, wherein drivers should follow and perform the pick-up and 
delivery actions, to bring docks into a balanced state (Dell'Amico, 2014). The surplus or shortage classification of 
each dock is based on the demand prediction (Xiao, 2020), optimal inventory estimation (Raviv, 2013) and remain 
inventory monitoring. In case of static rebalancing, those tasks are computed separately. However, dynamic 
models can relate those problems with time dimension. More precisely, dynamic-PDVRP uses the state-action-
reward formulation of RL-MDP. For instance, the inventory of each stop, the vehicle location and capacity, and 
the historical demand could represent the state of the system, while the action produces the vehicle’s next 
location to be visited and the size of items to pick-up or deliver. Additionally, the reward can depict the waiting 
time of customers, the total revenue, and the operational expenses for rebalancing routing. 

 

Figure 34. Rebalancing without subtour 
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Figure 35. Rebalancing with subtour 

Moreover, the vehicle used for redistribution is subject to capacity constraints which necessitates the use of 
subtours in order to efficiently cover a station demand that exceeds capacity. For instance, in the example of 
Figure 34 the demand in every station is not higher than the vehicle capacity so it needs to visit each station only 
once. On the other hand, in the example of Figure 35, there is a station in which the demand exceeds the vehicle’s 
capacity and therefore a subtour is necessary. Thus, the subtour elimination constraints of Model 1, Equation (32), 
must be replaced to allow the correct amount of subtours. Additionally, the constraints which allow only one time 
visit on each station, must also change to follow the sub-tour paradigm. Lastly, the new model must be able to 
handle even unbalanced demands, meaning that the surplus could be greater than the shortage and vice versa.  

Nevertheless, the classical MIP approaches usually struggle to achieve computationally efficient solutions. Hence, 
the exact PDVRP with medium size problems use cutting plane techniques mostly for the subtour elimination and 
connectivity constraints. However, larger instances could be solved via 2 stage process of assigning pick-up as 
origin points and drop-off locations as the destinations, and then using classical VRP formulation, which are easier 
to compute the final path. Therefore, the ridesharing assignment program without the time-windows and 
maximum distance constraints, produces the origin-destination pairs that will be used subsequently in the VRP 
algorithm to generate the final PD route. 

According to those new real-life needs, the formulation considers the following decision variable: 

 𝑥𝑖𝑗 = {
 ∈  ℤ+, if vehicle goes from 𝑖 𝑡𝑜 𝑗

0, 𝑒𝑙𝑠𝑒
 

(41) 

 

The constraints in Equations (26) – (29) of Model 1 are replaced with constraints in Equation (42), which allows 
more than one visit in each station. Additionally, constraints in Equation (30) remain the same, while Equation 
(32) is eliminated and Equation (31) is replaced by Equation (43). Finally, constraints in Equation (46) are the new 
constraints for subtour elimination according to existing subtour needs and Equations (44)-(45) assure that the 
demand will be served. 
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 ∑ 𝑥𝑖𝑗 𝑖 𝜖 𝑉  = ∑ 𝑥𝑗𝑖 𝑖 𝜖 𝑉  ,  ∀ 𝑗 ∈ 𝑉 

(42) 

 

 0 ≤  𝑓𝑖𝑗   ≤   𝑄 ∗ 𝑥𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴   
(43) 

 ∑ 𝑓𝑖𝑗 𝑗 𝜖 𝑉  - ∑ 𝑓𝑗𝑖 𝑗 𝜖 𝑉  = −𝑞𝑖  ,  ∀ 𝑗 ∈ 𝑉+ 
(44) 

 ∑ 𝑓𝑖𝑗 𝑗 𝜖 𝑉  - ∑ 𝑓𝑗𝑖 𝑗 𝜖 𝑉  ≤ −𝑞𝑖  ,  ∀ 𝑗 ∈ 𝑉− 
(45) 

 𝑥(𝛿−(𝑆))  ≤  𝑟(𝑆), ∀ S ⊆ V                                                
(46) 

The case, of the free-floating unbalanced system handled in a similar way. In particular, the dock-less bikes 
clustered into small groups and treated as they are virtually in stations. Hence, the rebalancing techniques remain 
the same as the fully dock-based system. 

5.4.7. Car-sharing 

The car-sharing (CS) services fall into the same category as BS services in terms of resource sharing, relocation 
management strategies, and station versus free-floating dilemmas. Namely, sharing transport modes is the major 
category while bikes, cars, or scooters can be the mode alternatives. However, CS systems have some practical 
limitations compared to BS systems that mostly depends on the cost of the resources (bikes, cars, scooters), on 
the environmental impact, relocation easiness, and parking/station locations availability. In contrast, the road 
networks are much larger than bike networks, so that they can cover large distance trips more effectively, while 
micro mobility services are restricted to urban areas, where the network infrastructure allows operations. The 
Table 17 summarizes the advantages and disadvantages of each mode, which are closely related to the costs of 
each system.  

 Bike-sharing Car-sharing 

Advantages 

Low cost of bikes and depreciation costs 
Easier rebalancing 
Minimum stations and parking 
requirements 
Environmentally friendly 
Fewer labour costs for rebalancing 
Cost effective for users 
Minimum maintenance costs 
Healthy habit 

Large operational area 
Environmentally friendly (EVs) 
Do not depend on weather conditions 
Efficient for non-flat cities 
Every modern city has an extensive 
road network 
Convenient and restful 

Disadvantages 

Short trip range 
Most cities do not have the appropriate 
bike network 
Requires good weather conditions 
 Hard to use in cities that are not flat 

High depreciation, purchase, and 
maintenance costs 
A lot of parking requirements  
Expensive rebalancing/relocation 
operations 

Table 17. Comparison of Bike-sharing and Car-sharing 

Based on those special issues, the CS system with the objective function in Annex A5 needs some additional terms. 
In particular, the objective must also contain the depreciation, purchase and maintenance costs of shared cars, 
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which are important. Moreover, considering the high cost of fleet relocation, there will be a set of experiments 
that test the case of system without rebalancing. Lastly, the rest of the process remains the same while free-
floating/dock-based and fleet size are still decisions need to be made.  

The operational plan does not differ a lot from the one for BS. In fact, there are some practical differences. For 
instance, there is no vehicle that can load the cars, instead the system can have a car that relocates the staff that 
perform the relocation. Therefore, at each step the maximum capacity of car transactions is one vehicle per move. 
Thus, the system has two parallel routing processes, the one that carries the rebalance drivers to car and the one 
that performs the actual relocation of the fleet. To conclude, the whole operation is relevant to BS but the time 
between relocation and the relocation process itself remains an open issue, which needs to be determined via the 
simulation.   

5.4.8. Micro-mobility (Scooter sharing) 

The last part refers to scooter sharing systems, which during last decades have faced a lot of popularity as an 
urban mobility alternative. However, the methods for planning and operational design are similar to the bike-
sharing system ones. Especially, the scooter sharing system usually operates only in free floating mode. Hence, 
the planning module must decide only the fleet size and the service area. Table 18 presents some of those 
properties along with some constraints the scooter sharing systems have.  

 Advantages Disadvantages 

Scooter sharing 

Low cost of scooters and depreciation costs 
Minimum stations and parking 
requirements 
Environmentally friendly 
Cost effective for users 
Minimum maintenance cost 
Do not require dock fees 
Do not require bodywork 

Restricted in urban areas 
Free-floating system requires a lot of 
effort in rebalancing/relocation 
Depends on weather conditions 
Efficient for non-flat cities 
Charging requirements 
Safety issues.  

Table 18. Scooter sharing system advantages and disadvantage 

Lastly, one major difference, compared to dock-based bike system, is that scooter sharing relies on the prediction 
and redistribution modules of the operational system. To handle this task, the algorithm uses a pre-process step 
that defines zones of scooters. These zones are based on density criteria across the spatial and temporal features 
of the scooter trips. The rebalancing algorithm uses them to perform the calculations. However, the algorithm 
must also contain pick-up and delivery delay as the station is a large area and so the process need some time to 
perform the actions. In summary, scooter sharing, and bike-sharing are roughly similar, although some practical 
changes need to be implemented, to make the models more realistic. 
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6. Supply 
This section consists of models related to traffic assignment and car-ownership. Usually, a static assignment model 
is employed within the traditional 4-step approach. To build over this model, an improved static assignment 
method has been developed. Subsequently, a dynamic assignment approach is also elucidated, which offers the 
flexibility to model the new mobility services at a strategic level and at the same time enables more detailed 
evaluation on specific study areas at a disaggregate level. With regards to car-ownership, there is a growing 
concern for private car ownership and use, and hence, a module for it is added. Both a simple aggregate and a 
complex disaggregate models are proposed. Depending on the data availability and the requirements, one could 
choose a model between the two. 

6.1. Traffic assignment 

6.1.1. Assignment methods for urban environments 

6.1.1.1. Motivation and objective 

For many years, traffic network models have been used to aid in the planning of large-scale infrastructure projects. 
Typically, the network models for macroscopic analysis are focused on the main roads used by traffic. Recent 
developments and the continuous evolution in our transport system intervene at a much lower network level. The 
introduction of shared mobility and Mobility As A Service (MaaS) systems requires the adaptation of the traditional 
transport planning tools to this new context. MaaS systems provide a door-to-door solution for urban trips and, 
as a result, this requires the full network to be considered in urban analyses. On top of this, there is an evolution 
towards a mixture of modes on local roads. Urban infrastructure is redesigned to accommodate slow modes, 
public transport, traditional cars, and logistic services. Urban planners are required to forecast what the impact 
will be of introducing such systems. They need to answer questions about shifting mobility patterns and future 
usage of road infrastructure.  

In most existing traffic assignment models, centroids and connectors are used to distribute traffic over the 
network. For each zone that generates and attracts demand, a centroid is considered as a hypothetical point that 
acts as a source/sink of traffic for that zone. Next, connectors are used to connect each centroid to the actual 
roads in the network.  

It is well known that there are two main sources of errors that are introduced by considering centroids and 
connectors (Manout et al., 2020; Jafari et al., 2015). Firstly, intrazonal traffic on local roads is completely missing. 
Intrazonal traffic starts to become more important if large zones are considered. Many trips remain local and 
consider only a short route through the network. If this trip is completely within a zone, it is considered an 
intrazonal trip and it cannot simply be modelled by assignment models with centroids and connectors. Secondly, 
the positioning of connectors leads to unrealistic route choice near its attachment points. If connectors are 
attached too far away from the centroid, local roads are hardly used because traffic will leave the network too 
soon. Attaching connectors close to the centroid on the other hand will overload local roads. On top of this, the 
attachment problem must be reconsidered each time a zone is changed or when the demand pattern evolves. 
These sources of error make it hard to use traffic counts on local roads efficiently in the calibration process, and 
can introduce errors due to overfitting. 

Decreasing the size of zones to address the above problems introduces additional problems related to 
computational burden and memory efficiency, as the number of routes increases quadratically with the number 
of zones. In this work, we develop a traffic assignment method in which all roads act as a potential origin or 
destination by users, without overloading the computational burden of the assignment problem. 
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6.1.1.2. Methodology 

To avoid the problems related to the discrete nature of connectors, we suggest refraining from the use of 
connectors, but instead treat every link within a zone as an origin and destination. However, applying this strategy 
naively can render the assignment infeasible, as the number of routes increases quadratically with the number of 
zones. 

We suggest applying an implicit routing algorithm within a stochastic assignment framework to substantially 
decrease the computational effort. In the following sections we specify the details of this approach.  

6.1.1.2.1. Destination-based implicit routing 

Many user equilibrium solvers require the storage of every used path in the network. It is known that most of 
these paths share multiple segments or sub-routes (Bar-Gera, 2010). Therefore, similar sub-route switches are 
made by users of different OD-pairs and even multiple OD-pairs reach an equilibrium state over a mutual sub-
route set. The destination-based (DB) approach exploits this and efficiently manipulates/stores route flows in an 
implicit fashion (Ziliaskopoulos et al., 2004). Here, it is assumed that traffic from any origin towards the same 
destination behaves identically once merged at a specific node.  

The implicit routing data structure is composed of link-destination specific proportions 𝜙𝑎𝑑, which form the 
splitting rates at each node of the node set 𝑛 ∈ 𝑁, for its corresponding outgoing links 𝑎 ∈ 𝐹𝑆𝑛 (forward star). 
These proportions guide the traffic at node 𝑛 into each of the outgoing links of that node towards their respective 

destination. By definition ∑ 𝜙
𝑎𝑑𝑎∈𝐹𝑆𝑛

= 1 must hold for each node in the network. In Figure 36b, link-destination 

proportions are given for every link in the network formed by the directed graph G(𝑁, 𝐴) of Figure 36a. In a 
network with more than one destination, such a split proportion map must be constructed for each destination.  

Reconstructing the possible paths in Figure 36b, an infinite cyclic path is formed by consecutively visiting link 𝑎3 

or link 𝑎4. This path cannot easily be excluded from the path set, herewith allowing some vehicles to run around 
that circle and to accumulate. Therefore, techniques to avoid cyclic flows will need to be applied. The solution 
stems from Bar-Gera (2002), Dial (2006), and Gentile (2014a). In that case, the problem has been solved by 
considering only acyclic bushes as valid data structures for implicitly storing destination-based routing 
information. A split rate graph is an acyclic bush if the set of edges with strictly positive split rates form a (reverse 
spanning) bush rooted at the destination for which no sequence of edges loops back onto itself. The graph of link 

proportions in Figure 36b can be transformed into an acyclic bush by setting 𝜙
𝑎3𝑑

 or 𝜙
𝑎4𝑑

 to zero and removing 

that edge from the graph. Note that, in this case, only a subset of three of the four non-cyclic paths in the network 
is feasible in the data structure.  

 

Figure 36. Simple single destination network (a) with the primal link-node splitting rate map (b) 
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6.1.1.2.2. Stochastic assignment 

The destination-based implicit routing algorithm above is combined with a stochastic assignment approach. We 
choose a stochastic instead of a deterministic assignment because this can result in a more realistic distribution 
of traffic over the network. 

In the stochastic route choice model of (Bellei et al., 2005) the proportions 𝜙𝑎𝑑  represent the probability of 
choosing link 𝑎 conditional on being at node 𝑛 when traveling to destination 𝑑. Cyclic routes are avoided by only 
considering links with end nodes being closer to the destination than the current node. This is referred to as 
exploiting the topological order in the graph (like in Dial’s algorithm proposed in Dial and Voorhees (1971)).  

The destination-based link probabilities are computed in two phases. First node and link weights are computed. 
This is done in an upstream way starting at the destination, visiting nodes in ascending order according to distance 
towards the destination. The node weight 𝑤(𝑛) of the destination is initialized as 1. The other node weights are 
computed by summing the link weights 𝑎(𝑙) of all links in the forward star that are closer to the destination: 

 𝑤(𝑛) = ∑ 𝑎(𝑙)

𝑙∈𝐹𝑆𝑛

 
(47) 

 

Link weights are computed based on the downstream node weight and the travel time 𝑡𝑡𝑙 on the link: 

 𝑎(𝑙) = 𝑤(𝑛) ∙ exp (−𝜃 ∙ 𝑡𝑡𝑙) 

(48) 

 

with 𝑛 being the downstream node of 𝑙 and 𝜃 being the scaling parameter of the logit formula. 

Pseudo code for computing node and link weights: 

 

Next, destination-based link probabilities are found for every node in the network by relating the node weights to 
link weights of the forward star. As such flows can be easily propagated through the network by initializing demand 
on origin links and propagating it downstream according to descending node distance towards the destination:  

 

For (all sorted nodes in shortest path three) 
 For (all links in the backward star of the selected node) 
  update link weight 
  add link weight to upstream node weight 
 
 

 

For (all sorted nodes in shortest path three in reverse order) 
 For (all links in the forward star of the selected node) 
  update link flows 
  add link flows to downstream node flow 
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6.1.1.2.3. Access points 

The algorithm above propagates the flows on each link, and this for each destination. It can easily be extended to 
a network where every link is a potential source of traffic because most links are already covered when 
propagating the demand over the network. Therefore, the computational effort does not substantially increase.  

The fact that every link is a potential destination is harder to deal with, as the algorithm needs to propagate traffic 
for each destination separately. Increasing the number of destinations therefore increases the number 
computational effort proportionally. 

To avoid this, we propose the concept of access points. These access points are hypothetical connections at the 
boundary of each zone (see Figure 37). The number of access points of a zone is typically substantially lower than 
the number of links within a zone.  

 

Figure 37. Access points towards a zone 

These access points will determine the attraction towards that zone and are used to initialize the shortest path 
search upstream from that zone. In a final step, the flows arriving at the access points are propagated to each of 
the destination links: 

 

The access points of a zone can be determined exhaustively, but they can also be determined based on available 
data (e.g., Floating Car Data) or based on the network hierarchy. 

The model can be calibrated by setting the initial cost of the access points. For each access point we initialize this 
value to the average distance towards each link within the zone. Alternative approaches are also possible, for 
example, based on available data. 

For (each destination layer)  
 Find access points to the destination zone 
 Calculate shortest path tree initialized with access points weights 
 Compute node and link weights 
 Initialize node and link flows in each origin zone 
 Propagate flows towards the access points 
 Distribute flows from access points to links within the destination zone 
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6.1.1.3. Proof of concept 

We apply the methodology above on the Leuven network. Figure 38 shows a comparison between the traditional 
connector-based approach and the access-points method. As discussed before, all links in the origin zone are 
potential sources of traffic that produce trips and all links in the destination zone are considered sinks that attract 
trips. In the connector-based approach a single connector per zone is used. The differences between both 
approaches can of course be minimized if every node within the zone is connected to the centroid by a connector. 

 

 

Figure 38. Distribution of traffic expressed in percentage of the total volume between a selected origin and destination in Leuven 
area. Top graph: traditional assignment. Bottom graph: assignment with access points 



 

 

Modules: Induced demand  |  OD  |  Synthetic population generation  |  Mode choice |  

     Fleet management  |  Traffic assignment  |  Car ownership  |  Emissions 

Deliverable 4.1 New transport modelling approaches 
for emerging mobility solutions 

Page 100 of 137 

Copyright © 2021 by MOMENTUM Version: Issue 1 Draft 2  

 

The difference between both methods is clearly visible when zooming in on the origin and destination zone. Traffic 
distributes more evenly within a zone in the suggested approach. 

Furthermore, the example illustrates that the effect is not limited to the distribution of traffic within the zone; by 
considering multiple access points, different approach routes towards the zone are taken into account. This can 
have an important effect on the calibration and the resulting validity of the traffic model on major roads. 

6.1.1.4. Application within MOMENTUM 

The traffic assignment model will be demonstrated in the case study of Leuven, as in this case study the traffic 
flows on a substantial part of the network are monitored, particularly on local roads. This makes it possible to 
calibrate the traffic model more accurately, specifically on the local roads.  

6.1.2. Dynamic traffic assignment 

6.1.2.1. Motivation and objective 

This section introduces the hybrid Dynamic Traffic Assignment (DTA). The model is developed within the 
MOMENTUM project and has been implemented as part of the traffic simulation software, Aimsun Next (Aimsun, 
2021). 

Traditional strategic models are widely used by transport planners to support decision makers regarding 
investments in infrastructure and transport services. Traffic assignment is one of the key components of strategic 
transport models, which maps traffic demand to traffic network supply, by simulating route choices and network 
conditions, resulting in traffic flows, congestion, travel times, and emissions. Nevertheless, these models are not 
capable of modelling the transport supply and traffic behaviour in detail, often generating problematic and 
unrealistic traffic conditions and travel times. Therefore, they may not be the most suitable tool for decision 
making in some transport planning applications such as the modelling and assessment of new mobility services. 
Such services (e.g., car-sharing, on-demand ride services, etc.) are more complex in the sense that they would 
require running the model at the individual, agent-based, level in order to support the policymakers in their 
decision-making process for introducing any mobility policy. 

Moreover, the modelling of shared mobility services involves, besides the assignment of the trips into the network, 
algorithms for planning and allocation of the fleet of vehicles to serve the demand requests. Optimisation of these 
operations requires accurate information with respect to the network traffic conditions, such as travel times. 
Hence, for a realistic modelling of the shared service operations it may be necessary to iterate between the DTA 
and fleet management and/or mode choice models. In particular, the optimisation of the planning and operations 
of the fleet to serve the demand requests depends highly on the updated travel times obtained from the traffic 
assignment. Furthermore, a significant increase in demand for new services may result in variations of travel times 
that can, in turn, affect the modal split. 

To address these issues and needs within MOMENTUM, a hybrid DTA modelling framework is developed in which 
the route choice set is determined by dynamic path assignment for the whole large-scale network, while traffic 
supply is simulated with dynamic mesoscopic model in specific area of interest and the static macroscopic model 
in the remainder network. The developed framework is beneficial for the large-scale networks used in strategic 
transport planning where infrastructure changes or new mobility services require realistic knowledge of traffic 
conditions and travel times but may have a wider influence in terms of rerouting in the network. The use of the 
static macroscopic model outside of the areas where mesoscopic is strictly needed for realistic estimation of traffic 
conditions allows the transport modeller to increase the network size in the model without impacting too heavily 
on the runtime. Hence, an important contribution of the hybrid model is the improved run times when simulation 
of large-scale networks is needed, however, the analysis focuses on a smaller study area. 
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6.1.2.2. Methodology 

This section provides a description of the proposed hybrid DTA modelling framework with dynamic path 
assignment and hybrid network loading, namely a combination of static macroscopic and dynamic mesoscopic 
network loading, for large scale strategic transport models. 

The first subsection briefly presents the scope of traffic simulation software Aimsun Next, where the proposed 
framework on DTA is implemented. The second and third subsections describe the network loading and the path 
assignment models. 

6.1.2.2.1. Aimsun Next 

Aimsun Next is a traffic simulation software that integrates a set of demand and supply models, using a single, 
unified transport network infrastructure representation for simulation and assignment of all transport modes, 
such as car, public transport, bike, and pedestrian mode. The main advantage of an integrated modelling platform, 
like Aimsun Next, is that information used by models can be seamlessly and conveniently shared across different 
modelling granularity levels. 

The scope of the hybrid DTA modelling framework proposed in this chapter is to adopt an innovative approach 
which combines a static macroscopic and mesoscopic network loading with path assignment in a single network 
model. In Figure 39, the area to be simulated with mesoscopic network loading is defined by a polygon which is 
then converted to a simulation area. The area outside of the polygon is simulated at the same time, however, with 
static macroscopic network loading in which travel time depends on a function (e.g., volume delay functions), 
instead of depending on behavioural models (e.g., car-following). 

 

Figure 39. Example of macroscopic and mesoscopic simulation areas 

Individual vehicles are generated and assigned on the transport network, instead of path flows traditionally used 
in strategic transport models. Individual vehicles are assigned to a path using either a stochastic (Stochastic User 
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Equilibrium, SUE) route choice path-assignment algorithm or a dynamic user equilibrium (DUE) path-assignment. 
The path choice set generation considers all the links in the transport network. Figure 40 depicts the interaction 
scheme between network loading and path assignment, as part of the hybrid DTA framework. The network loading 
in the macro and meso areas, as well as the path assignment, are described in the following subsections. 

 

Figure 40. Interaction between network loading and path assignment 

6.1.2.2.2. Network loading: hybrid static macroscopic and dynamic mesoscopic solution 

Network loading describes how a vehicle moves in each element of a network (sections, turn, nodes). 
Consequently, it determines how travel time is calculated and therefore it has a direct impact on the costs 
obtained. 

Network loading with hybrid static macroscopic and dynamic mesoscopic solution consist of three main 
functionalities/steps: 

Function 1: Individual vehicle generation 

Instead of traffic flow, individual vehicles are generated at intervals according to a constant distribution at their 
origin centroid. 

The generation of individual vehicles enables the following functionalities: 

• Individual tracking of vehicles/trips 

• Realistic congestion in the meso boundaries 

• Consider time dependent generation of traffic following traffic demand profile 

• Dynamic path calculations in the macro area 

Function 2: Static macroscopic network loading 

In the macro area, vehicles are treated as individual vehicles rather than using a flow as in traditional strategic 
transport modelling. The differences compared to meso areas are that individual lanes are not considered, and 
travel time is the same for all vehicles passing through a section or turn during the same time period. Vehicles 
which begin their trip within the macro network, before being generated, they are assigned a path from the path 
assignment calculation. They are then generated either instantaneously or with a delay onto the first section with 
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the meso area following the generated path. The delay on vehicle generation can be specified using either a 
volume delay cost function or a pre-selected cost-function component. The travel time and cost are retained by 
the vehicle for the macro sections defined by the volume delay functions (VDFs), turn penalty functions (TPFs) and 
junction delay functions (JDFs). A virtual queue is generated at the boundary, where a turn goes from a macro 
section to a meso section. In this type of turn, a vertical queue is created where vehicles coming from the macro 
area wait to enter the meso area as soon as possible. The delay incurred in the virtual queue is considered in the 
next meso link. 

As explained above, vehicles are generated individually at the centroid level, however, the model aggregates the 
number of trips for each path and assigns flows of vehicles to each section and turn of the macro area. The value 
of the flows assigned depends on the changes in the time-dependent demand as well as changes in routing at 
every route choice cycle, due to congestion in specific paths at a given time interval. Hence, the sections and turns 
of the macro area have time-dependent outputs, namely, dynamic flows as well as dynamic costs for each route-
choice interval. 

Function 3: Mesoscopic network loading 

In the meso area, vehicles move as individual vehicles and the average experienced travel time within a section 
and turn is reported. Hence, the meso area needs to have detailed representation of the network geometry. In 
contrast to the macro areas, the travel time is different for each vehicle and is obtained by applying the mesoscopic 
behavioural models (a simplified car-following model and the gap acceptance model). 

For vehicles which begin their trip within the meso network, they are generated within the network and start their 
trip along the path defined by the path assignment process. The number of vehicles generated depends on the 
input OD matrix and the time between two generated vehicles is determined by the arrivals model. When a vehicle 
exits the meso area, it is assigned to all downstream macro sections taking into consideration the following two 
cases: 

1. The vehicle completes its path in the macro area. 
2. The vehicle leaves the macro area and re-enters a meso area. 

In the second case, where the vehicle re-enters a meso area, the vehicle enters through the virtual turn, being the 
boundary between macro and meso areas. The travel time when moving from meso to meso through a macro 
area cannot be instantaneous but it is evaluated using the macro functions or function components. 

6.1.2.2.3. The hybrid path assignment  

The path assignment computes a set of candidate paths for each origin and destination and assigns a number of 
trips to each path based on the generalised cost and traffic assignment algorithm. For instance, a DUE assignment 
algorithm can be used. This is an iterative procedure aiming to minimise, for each OD pair, the travel costs 
experienced by vehicles departing at the same time. In other words, no driver can reduce his travel time by 
switching to another path. The convergence to an equilibrium is measured using the relative gap (RGap), which is 
the relative difference between the total cost actually experienced and the total cost that would have been 
experienced if all the vehicles had a travel time equal to that of the current shortest path. Finally, the route choice 
cycle of the path assignment model can be defined to indicate how frequently the path choice set will be 
recomputed throughout the simulation period.  

6.1.2.2.4. Hybrid macro-meso example 

The hybrid DTA framework is illustrated with a simple example on Figure 41 and consists of the following main 
steps: 

1. A vehicle is generated according to the arrivals process at the origin centroid. 
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2. The simulation considers the next vehicle to enter the network and then calculates a path for the vehicle 
according to the generalised cost equation. 

3. If the start is within the macro area, it is generated either instantaneously or with a delay to the first meso 
section and the volume on all sections that have been traversed is increased by one. 

4. If it is safe to enter the meso section, the vehicle enters and then moves according to mesoscopic network 
loading. 

5. If the destination is in the macro area, once the vehicle traverses all meso sections, the vehicle is 
instantaneously or with a delay moved to the destination centroid with the volume updated accordingly. 

As described above, the final costs for the trip will be the sum of the costs (e.g., travel times) derived by 
macroscopic and mesoscopic network loading models. Those are derived by the macro cost functions (VDFs, TPFs, 
JDFs) and the dynamic cost functions (experienced travel time), respectively. DUE evaluates new paths, assigning 
vehicles to them every route choice cycle (e.g., 15 mins) and iteratively performs equilibrium assignments until 
the convergence criteria are met. 

 

Figure 41. Hybrid macro-meso approach 

6.1.2.3. Application within MOMENTUM 

The proposed hybrid DTA framework offers the flexibility to model the new mobility services at a strategic level 
and at the same time enables more detailed evaluation of their impacts on specific study areas, which can be 
modelled at a disaggregate level. The area where key strategic decisions will be implemented is modelled as a 
meso area, while the rest of the urban network will be modelled as macro area to capture the propagation of 
traffic flow dynamics (delays, queues, etc). ). Nevertheless, the application of the hybrid DTA model within the 
MOMENTUM project would require modelling and calibration of the area where specific services will be tested 
and implemented at a mesoscopic level, to accurately capture the real traffic dynamics across those network 
areas, which need to be modelled with a mesoscopic traffic flow resolution. Calibration and validation of the 
mesoscopic areas depend on the data availability for each city involved in the project. It is anticipated that the 
hybrid DTA model will be used for strategic modelling of the new mobility services in the future and therefore 
would need to integrate with the general scheme for modelling shared mobility services, which is presented in 
this deliverable. 

6.2. Car-ownership module 

6.2.1. Aggregate car-ownership model 

6.2.1.1. Motivation and objective 

With an increasing interest towards sustainable transport in cities, there is a growing concern for private car 
ownership and use. Hence, one of the objectives within MOMENTUM is to build a model for estimating car-
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ownership. Existing car ownership models from the pertinent literature are usually based on indicators such as 
vehicle sales. However, to the best of our knowledge, an aggregate car-ownership model suitable for integration 
with the traditional four-step transport model is still not seen in the pertinent literature. Such a model should be 
based on the aggregate socio-demographic characteristics of city districts or traffic zones (e.g., population 
density). Furthermore, given the ability of shared mobility systems to reduce car-ownership, supply of such 
systems should also be considered. Therefore, within this section, the development of an aggregate car-ownership 
model based on socio-demographic variables and sharing system supply is presented. 

6.2.1.2. Data sources used for model estimation 

This analysis is based on the data from the statistical yearbooks 2017 and 2018 from the city of Regensburg. The 
yearbook provides data such as the household characteristics and car-ownership aggregated at the level of the 
(18) districts of Regensburg city. The data is compiled by Statistics Department from the Office for Urban 
Development and is available at http://www.statistik.regensburg.de. 

6.2.1.3. Estimation methodology 

The aggregate car-ownership model presented in this section is based on linear regression and two different 
variants of car-ownership are explored. As shown in Figure 43, initially, a model is estimated with total number of 
cars as the dependent variable, followed by another model with average number of cars per individual as the 
dependent variable (which is total number of cars/total population) . The estimation is carried out in R. 

Given that the statistical yearbook provides data in the former format, it was naturally the first choice to be 
considered as the dependent variable. It is to be noted that a major issue with the estimation is the correlation 
between the independent variables (as shown in Figure 42), which is a common issue when modelling at an 
aggregate level. Hence, several transformations of and interactions between the variables have been carried out, 
before arriving at the final best model specification.  

 
Figure 42. Aggregate car ownership model – correlation between the variables available for model estimation 

http://www.statistik.regensburg.de/
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The estimation result showed that the population density is an insignificant factor, which is unforeseen, as it is 
expected to be a significant factor (i.e., with an increase in population density, total number of cars is expected to 
decrease). Following this result, k-means clustering is used to cluster the districts according to population density 
and the algorithm distinguished the districts into three categories, which can be named as low, medium, and high 
density districts. 

Inclusion of the cluster variables in the model showed that the medium density districts have a higher number of 
cars, when compared to low and high density districts. This is counter-intuitive as low density districts are expected 
to have a higher number of cars. A deeper look into the data shows that the low density districts are the locations 
of large commercial areas or weekend spots. Hence, they are mostly destination zones and therefore, low number 
of cars in such zones, thereby resulting in a positive coefficient for medium density districts. It is to be noted that 
the higher number of cars in the medium density districts is the reason for the insignificance of the original 
population density variable (i.e., the relationship is not linear and continuous). 

A second model, with average number of cars per individual as the dependent variable, is estimated to further 
explore the influence of population density. The estimation results show a clear pattern of the influence of 
population density, i.e., a decrease in average number of cars per individual, with an increase in population 
density. Thus, different variants of a dependent variable could show different influence of independent variables. 

As mentioned in Section 6.2.1.1, shared mobility systems can reduce car-ownership, and hence, their influence 
has to be considered in the model specification. However, the car-sharing system in Regensburg is still a small 
service and hence, it is not possible to quantify its impact on car-ownership. Hence, existing pertinent literature is 
explored, which showed a magnitude of car-ownership reduction of 2-5 per sharing vehicle in European cities 
(Fromm et al., 2019). Leaving the extreme values, a coefficient of 3 and 4 could be used. To be conservative, a 
value of 3 is selected for inclusion in the regression model.  

 

Figure 43. Methodology – Aggregate car ownership model 
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6.2.1.4. Estimated coefficients and insights 

The estimated coefficients for the models (1 & 2) are shown in Table 19. Based on the estimated coefficients, 
there is an increase in the total number of cars in a district (or average number of cars per individual in a district, 
in case of Model 2), when the percentage of households with “size 3 and above” increases. This implies that larger 
households have a higher number of cars. Similarly, there is an increase in the value of the dependent variable, 
when the percentage of population with “age 65 and above” increases, suggesting that older people are more 
probable to own a car. On the one hand, when considering Model 1, the total number of cars is higher in the 
medium density districts. On the other hand, when considering Model 2, there exists a linear relationship (in log 
scale) between average number of cars per individual in a district and population density, which is not true in the 
case of Model 1, as medium density districts are found to have a higher value. 

Model 1 (Total no. of cars in thousands)  Model 2 (Average no. of cars per individual) 

Variable Estim. S.E. t-stat  Variable Estim. S.E. t-stat 

Intercept -3.94 0.55 -7.17  Intercept  0.21 0.05  4.40 

% of households with 
size ≥ 3 

 0.10 0.01  7.50  
% (in decimal format) of 
households with size ≥ 3 

 0.69 0.10  6.91 

% of population with 
age ≥ 65 

 0.08 0.02  4.74  
% (in decimal format) of 
population with age ≥ 65 

 0.81 0.12  6.96 

Medium density 
districts (dummy) 

 0.73 0.23  3.20  Population density (log) -0.03 0.01 -2.96 

Population in 
thousands 

 0.42 0.01  28.62      

Adj. R2: 0.97  Adj. R2: 0.84 

Table 19. Estimation result – Aggregate car ownership model 

The final model specification, along with the addition of coefficient for sharing system supply, is as follows:  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑐𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑 =  −3.94 +  0.10 (% 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 
≥  3)  +  0.08 (% 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑔𝑒
≥  65) +  0.73 (𝐷𝑢𝑚𝑚𝑦 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠)  
+  0.42 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠) –  0.003 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

(49) 

 

6.2.1.5. Application within MOMENTUM 

Model 1 will be demonstrated in the case study of Regensburg, as it has a better fit (when compared to Model 2) 
and the impact of sharing vehicles on car ownership is explored in terms of reduction in total number of cars in 
the pertinent literature.   

6.2.2. Disaggregate car-ownership model 

6.2.2.1. Motivation and objective 

Analysing the impacts of sociodemographic and mobility variables on car-ownership can generate relevant results 
for both the development of public policies and the estimation of transport models. This section presents the main 
methodology and results of estimation of a disaggregate car-ownership model, developed using a combination of 
mobility survey data and supply data of car-sharing services. 
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In the scientific literature, car-ownership has been modelled from many different perspectives such as aggregate 
time series models, aggregate cohort models, pseudo-panel models, and static disaggregate models (de Jong et 
al., 2004). The latter group has gained relevance in the past couple of decades, particularly the so-called 
unordered-response models, which have been proved to be more appropriate for modelling car-ownership than 
the ordered-choice models (Bhat and Pulugurta, 1998). The Multinomial Logit Model (MNL) presented in this 
section belongs to the class of unordered-response models, based on random utility theory.  

In the existing literature, multinomial logit models for car-ownership modelling have typically been limited to the 
use of sociodemographic variables such as age, income, occupation, number of household members, etc. The 
proposed model, however, incorporates the effects of other transport alternatives; for instance, cargo bike 
(availability) and emerging mobility solutions (both existing car-sharing subscriptions and willingness to use car-
sharing in the future). Furthermore, the model integrates the effects of car-sharing supply, by means of the 
number of car-sharing vehicles in the city districts. 

6.2.2.2. Data sources used for the model estimation 

Two main data sources from the city of Leuven have been employed to develop the model. The Stadsmonitor 
survey (City Monitor) provided disaggregated sociodemographic information and transport demand data for a 
sample of 2669 individuals. This survey was carried out in Spring 2017 in the region of Flanders and the dataset 
contains details such as sociodemographic characteristics and mobility habits. The survey description and dataset 
are available at https://gemeente-stadsmonitor.vlaanderen.be/.  

The second dataset is the car-sharing supply data for the year 2019. This dataset included the number of available 
car-sharing vehicles in the 8 districts of Leuven. Unfortunately, no district-level data was available for 2017 (the 
year in which the City Monitor survey was conducted), but only the aggregate number of car-sharing vehicles for 
the city. Hence, considering the spatial distributions of vehicles in 2019, i.e., the number of car-sharing vehicles 
per district in relation to the total number of car-sharing vehicles in Leuven, the number of car-sharing vehicles 
per district in 2017 was estimated.  

Both the data sources were combined to assign the car-sharing-supply to the samples in the City Monitor survey. 
Besides, the City Monitor dataset was analysed and filtered for possible errors (e.g., inconsistencies between 
variables) and outliers. 

6.2.2.3. Estimation methodology 

The data processing and the model estimation were carried out using R Statistical software and the open-access 
package Mlogit (Croissant, 2020). A preliminary analysis of the dataset indicated that the number of households 
in the dataset with three or more cars was too small to provide statistically relevant results. Consequently, as 
indicated in Figure 44, the multinomial logit model was developed considering four possible alternatives for every 
household: no car, one car, two cars, three or more cars.  

https://gemeente-stadsmonitor.vlaanderen.be/
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Figure 44. Methodology – Disaggregate car ownership model 

Household income data was provided in the City Monitor survey by means of an ordinal variable with eleven levels. 
Considering numerous levels is likely to produce insignificant estimates for the coefficients, especially as some 
levels have a small number of observations. Therefore, several transformations and aggregations into a reduced 
number of categories were explored, before arriving at the following final categories: Low Income, <1750 
€/month; Medium Income, 1750-3250€; and High Income, >3250€/month. Similarly, transformations were tried 
out for age. However, inclusion of the variable in the ordinal form with numeric coding from 1 to 8 resulted in 
better estimation. 

Models are developed in a stepwise fashion. The decision to keep an independent variable is based on the p-value 
of the corresponding coefficient (threshold level of 0.10), the log-likelihood test, and the plausibility of the 
coefficient sign according to the existing literature. 

6.2.2.4. Estimated coefficients and insights 

The final model specification, which is selected based on the p-value of the independent variables and the 
likelihood ratio test, is as follows: 

𝑁𝑜 𝑐𝑎𝑟 (0)  =  0 (𝑏𝑎𝑠𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 
𝑂𝑛𝑒 𝑐𝑎𝑟 (1)  =  𝑖𝑠𝐵𝑒𝑙𝑔𝑖𝑎𝑛 +  ℎ𝑎𝑠𝐿𝑜𝑤𝐼𝑛𝑐𝑜𝑚𝑒 +  ℎ𝑎𝑠𝑀𝑒𝑑𝑖𝑢𝑚𝐼𝑛𝑐𝑜𝑚𝑒 +  𝐴𝑔𝑒3 +  𝐴𝑔𝑒 

+  𝐻𝐻𝑆𝑖𝑧𝑒 +  ℎ𝑎𝑠𝐶𝑎𝑟𝑔𝑜𝐵𝑖𝑘𝑒 +  ℎ𝑎𝑠𝑃𝑇𝑃𝑎𝑠𝑠 +  𝑖𝑠𝑈𝑛𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑇𝑜𝑈𝑠𝑒𝐶𝑆 
+  𝐶𝑆𝑆𝑢𝑝𝑝𝑙𝑦𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 +  𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑆𝑝𝑒𝑒𝑑 

(50) 
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𝑇𝑤𝑜 𝑐𝑎𝑟𝑠 (2)  =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑖𝑠𝐵𝑒𝑙𝑔𝑖𝑎𝑛 +  ℎ𝑎𝑠𝐿𝑜𝑤𝐼𝑛𝑐𝑜𝑚𝑒 +  ℎ𝑎𝑠𝑀𝑒𝑑𝑖𝑢𝑚𝐼𝑛𝑐𝑜𝑚𝑒 
+  𝐴𝑔𝑒3 +  𝐴𝑔𝑒 +  𝐻𝐻𝑆𝑖𝑧𝑒 +  ℎ𝑎𝑠𝐶𝑎𝑟𝑔𝑜𝐵𝑖𝑘𝑒 +  ℎ𝑎𝑠𝑃𝑇𝑃𝑎𝑠𝑠 
+  𝑖𝑠𝑈𝑛𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑇𝑜𝑈𝑠𝑒𝐶𝑆 +  𝐶𝑆𝑆𝑢𝑝𝑝𝑙𝑦𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 +  𝐶𝑆𝑆𝑢𝑝𝑝𝑙𝑦 
+  𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑆𝑝𝑒𝑒𝑑 

𝑇ℎ𝑟𝑒𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑐𝑎𝑟𝑠 (3)  
=  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑖𝑠𝐵𝑒𝑙𝑔𝑖𝑎𝑛 +  ℎ𝑎𝑠𝐿𝑜𝑤𝐼𝑛𝑐𝑜𝑚𝑒 +  ℎ𝑎𝑠𝑀𝑒𝑑𝑖𝑢𝑚𝐼𝑛𝑐𝑜𝑚𝑒 
+  𝐴𝑔𝑒3 +  𝐴𝑔𝑒 +  𝐻𝐻𝑆𝑖𝑧𝑒 +  ℎ𝑎𝑠𝐶𝑎𝑟𝑔𝑜𝐵𝑖𝑘𝑒 +  ℎ𝑎𝑠𝑃𝑇𝑃𝑎𝑠𝑠 
+  𝑖𝑠𝑈𝑛𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑇𝑜𝑈𝑠𝑒𝐶𝑆 +  𝐶𝑆𝑆𝑢𝑝𝑝𝑙𝑦𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 +  𝐶𝑆𝑆𝑢𝑝𝑝𝑙𝑦 
+  𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑆𝑝𝑒𝑒𝑑 

The estimation result is shown in Table 20.  

Variable Estim. S.E. z-val Interpretation 

isBelgian (1) 1.88 0.28 6.78 Belgian citizens are relatively more likely to 
own a higher number of cars than non-

Belgians. isBelgian (2 & 3) 2.10 0.38 5.47 

hasLowIncome (1) -1.53 0.29 -5.28 

With an increase in income there is a higher, 
probability to own cars (note: high income is 

kept as the reference category). 

hasLowIncome (2 & 3) -3.60 0.45 -8.01 

hasMediumIncome (1) -0.70 0.28 -2.51 

hasMediumIncome (2 & 3) -1.46 0.30 -4.79 

Age (1 & 2)  -0.66 0.17 -4.01 Age (ordinal variable with levels 1 to 8, as 
provided by the City Monitor survey) is found 

to positively influence the car-ownership. 
However, there exists a polynomial 

relationship, i.e., a changing slope rather 
than a constant one (e.g., the differences 

between older age groups are greater than 
for middle age groups). 

Age (3) -1.18 0.35 -3.38 

Age3 (1 & 2) 0.02 3.64 e-3 4.79 

Age3 (3) 0.03 6.28 e-3 4.50 

HHSize (1) 0.50 0.09 5.55 
Larger households are more likely to have a 

higher number of cars. 
HHSize (2) 0.85 0.10 8.19 

HHSize (3) 1.13 0.15 7.59 

hasCargoBike (1) -0.72 0.40 -1.78 The availability of a cargo bike in the 
household decreases the likelihood of having 
a car (especially, in the case of two or more 

cars). This could be due to the distinctive 
features of cargo bikes, which turn them into 
effective car-substitutes for activities such as 

shopping, transport of mid-size/weight 
cargo, etc. 

hasCargoBike (2) -2.19 0.48 -4.52 

hasCargoBike (3) -3.10 1.13 -2.74 

hasPTPass (1) -0.85 0.22 -3.88 Possession of a PT pass negatively influence 
car-ownership. hasPTPass (2 & 3) -1.22 0.25 -4.85 

isUnwillingToUseCS (1) 0.61 0.22 2.75 With respect to the attitude of citizens 
towards car-sharing services, the isUnwillingToUseCS (2) 1.04 0.26 4.03 
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isUnwillingToUseCS (3) 1.38 0.45 3.10 

unwillingness to use car-sharing in the future, 
as stated by the survey participants, is shown 
to be related with higher car-ownership 
levels.  

CSSupplySubscription  
Interaction (1, 2 & 3) 

-0.12 0.02 -5.27 
When a car-sharing subscription is available, 
an increase in car-sharing supply results in 
lower probability to own cars. Besides the 

interaction effect, there is generally a 
decrease in utility to own two or more cars, 

with an increase in the number of car-sharing 
vehicles in the district. 

CSSupply (2) -0.05 0.02 -2.28 

CSSupply (3) -0.09 0.04 -1.96 

CommuteSpeed (1) 0.03 0.01 4.47 Higher commuting speeds are found to be 
associated with higher car-ownership levels. 
A model with coefficient for travel distance 
suggested an increase in car-ownership for 
higher distances. These two indicate that 

existing alternatives to car-ownership are not 
competitive enough for longer distances. 

CommuteSpeed (2 & 3) 0.04 0.01 4.70 

Intercept (2) -1.00 0.51 -1.98 - 

Intercept (3) -2.66 1.22 -2.18 - 

Log-Likelihood: - 937.65; Note: CS – Car-sharing 

Table 20. Estimation result – Disaggregate car ownership model 

6.2.2.5. Application within MOMENTUM 

This model can help to understand the factors influencing car-ownership, and consequently, contribute to foster 
measures that reduce dependency on motorized private vehicles. Furthermore, the model can be integrated into 
traffic simulation models to account car-ownership levels. In the context of the MOMENTUM project, this model 
will be implemented in the case study of Leuven. 
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7. Sustainability 
Given the increasing interest in environmental performance measures from cities, emission models are developed. 
Static traffic assignment models are the usual methods employed in the traditional strategic 4-step approach. 
Nevertheless, there is also a growing interest in dynamic traffic assignment. Hence, both static and dynamic 
emission models are developed. 

7.1. Emission module – Static emission model 

7.1.1. Motivation and objective 

Road transport emission calculations are rarely included in traffic modelling, for the simple reason that the scope 
of traffic models is primarily to understand traffic flows in the context of traffic management or for strategic 
assessment of adaptations to the road network.  

Emission calculations typically require an indicator for traffic volumes (i.e., vehicle-kilometre or vkm) and emission 
factors for key pollutants. Emission factors vary substantially related to properties of the vehicle (fuel, emission 
standard, age, etc.) or vehicle use (speed, acceleration, etc.). As accurate emission calculations tend to become 
complex, specific purpose-built emission models are used (e.g., COPERT for the EMEP emission reporting2), 
focusing mostly on the variation of the emission facto (to get an accurate estimate of the total emission), however, 
making full abstraction of the road network, thereby losing the geo-spatial dimension of traffic emissions.  

In some cases, emission calculations are added to a traffic model. Mostly heavily simplified emission factors are 
used (e.g., the CAR-model3 or OSPM4), which is fine to give a rough idea, but insufficient as input for, for example, 
air quality models. 

In this section, we attempt to merge the benefits of a detailed emission model with the spatial-detail benefits of 
a traffic model to produce a better estimate of traffic emissions. New mobility forms such as shared mobility are 
expected to have an important impact on emissions, as they can shift people away from private car use. This 
impact is expected to increase in the future. A more detailed emission model therefore allows for a better 
assessment of scenario’s in which these new mobility forms are analysed. We use a generic, future-proof approach 
and also solve issues related to data-granularity to improve beyond the use of single-value emission factors. 

7.1.2. Methodology 

We focus in particular on the additional features to produce emission estimates and make full abstraction of the 
traffic modelling side. The input required from the traffic model is quite simple: 1) the amount of vehicles, 2) the 
speed of the vehicles and 3) the length of the road segment. Temporal granularity can vary from single hour up to 
a full year, only constrained by data volume and computation time. 

The tailoring of emission factors for traffic models in our approach includes: 

 

 

2 https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 
3 https://www.infomil.nl/onderwerpen/lucht-water/luchtkwaliteit/slag/nsl-
rekentool/handleiding/algemeen/stroomschema/rekenvoorbeeld-carii/ 
4 https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/the-monitoring-program/air-pollution-
models/ospm/ 

https://www.eea.europa.eu/publications/emep-eea-guidebook-2019
https://www.infomil.nl/onderwerpen/lucht-water/luchtkwaliteit/slag/nsl-rekentool/handleiding/algemeen/stroomschema/rekenvoorbeeld-carii/
https://www.infomil.nl/onderwerpen/lucht-water/luchtkwaliteit/slag/nsl-rekentool/handleiding/algemeen/stroomschema/rekenvoorbeeld-carii/
https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/the-monitoring-program/air-pollution-models/ospm/
https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/the-monitoring-program/air-pollution-models/ospm/
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• Detailed vehicle fleet data and a one-off fleet projection (using TML’s fleet-model5), at EU-member state 
level, to produce an emission factor per year, per EU member state, for the pollutants CO, CO2, NOx, PM 
and VOC, using the COPERT 5 emission model6. 

• Account for the variation of the emission factor associated with the speed, at link level. 

We elaborate on both these elements. 

7.1.2.1. Fleet-estimate 

As indicated, emission factors differ strongly among vehicle types. Large vehicles emit more CO2, diesel vehicles 
emit more NOx compared to gasoline vehicles, and older cars emit substantially more emissions due to historically 
less stringent emission standards.  

The fleet composition differs between members states, so it is not possible to have a single emission factor for all 
countries. Moreover, the vehicle fleet constantly changes, so average emission factors are quickly outdated as 
new, cleaner vehicles replace older vehicles.  

For the purpose of maintaining simplicity in the calculation, we use the TML fleet-model7 and link it to COPERT 5 
to construct a date-set of fleet-average emission factors per pollutant, per EU member state and per year from 
2016-2050.  

The main goal of the fleet module is to convert aggregate estimations of transport demand, in terms of passenger-
km, tonne-km and/or vehicle-km, into a more detailed vehicle classification and generation (cohort), which 
directly relates to technology in terms of vehicle performance and characteristics, fuel use and emissions. The 
fleet inertia is included in the fleet model with a year-on-year estimate of natural scrappage of older cars, retention 
of the bulk of the fleet with decreasing use as cars grow older, and an estimation of new vehicles entering the 
active fleet, driven by traffic demand. The fleet dynamics are schematically shown in Figure 45. 

 

Figure 45. Fleet capacity planning mechanism in TML Fleet-model 

 

 

5 https://www.tmleuven.be/en/navigation/Fleet-Model 
6 https://www.emisia.com/utilities/copert/ 
7 https://www.tmleuven.be/en/navigation/Fleet-Model 

https://www.tmleuven.be/en/navigation/Fleet-Model
https://www.emisia.com/utilities/copert/
https://www.tmleuven.be/en/navigation/Fleet-Model


 

 

Modules: Induced demand  |  OD  |  Synthetic population generation  |  Mode choice |  

     Fleet management  |  Traffic assignment  |  Car ownership  |  Emissions 

Deliverable 4.1 New transport modelling approaches 
for emerging mobility solutions 

Page 114 of 137 

Copyright © 2021 by MOMENTUM Version: Issue 1 Draft 2  

 

We align the Fleet-model baseline projections on the common PRIMES-TREMOVE 20158 baseline and added 
changes to fuel efficiency improvements in line with recent policy developments.  

For the fleet projection, we make an assumption on the future market share of the different technologies. The 
largest uncertainty lies in the speed of uptake of electric vehicles (EV) and the duration of the transition period 
where plug-in hybrid electric vehicles (PHEV) will take a substantial market share.  

We use a conservative assumption on the EV-uptake, in line with the (current) targets of a 35% market share for 
EV by 2030. Figure 46 summarizes the market share of the different technologies at an EU-level. 

 

Figure 46. Central market share assumption of newly sold vehicles per technology type 2016-2050 

In a second step in the fleet model, this central assumption is adapted to member state level to account for: 

1. The member state’s diesel/gasoline/LPG share 
2. The position of the member state as a frontrunner or laggard of EV-adoption 
3. The lag or acceleration of the uptake of new vehicle as a result of cross-border trade in used vehicles. 

Typically, Eastern-EU countries lag due to a large influx of (young) used cars from Western Europe. 
Western EU countries will see a more accelerated pace of fleet renewal. 

Gradual fleet renewal will lead to the fleet composition per technology, as shown in Figure 47: 

 

 

8 https://ec.europa.eu/clima/policies/strategies/analysis/models_en 
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Figure 47. Fleet composition per technology 2016-2050 

The resulting fleet composition is then fed to the COPERT 5 for an emission estimate. A COPERT 5 standalone 
software tool exist, however, we opt to use the mathematical formulations of the emission calculation directly to 
produce aggregate emission factors. The equations are available via the EMEP guidebook.9 

The final result is a single table with aggregate emission factors with the following sets and dimensions: 

1. Country: EU member states + CH, TR, UK, IS, NO (32 countries) 
2. Pollutants: CO, CO2, NOx, PM, VOC 
3. Year: 2016-2050 

Figure 48 below summarizes the trend of the fleet-aggregate emission factor for four pollutants: CO2, NOx, PM 
and VOC, per member state. The large variation between members states is immediately apparent, especially up 
to 2030.  

 

 

9 https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-
energy/1-a-combustion/1-a-3-b-i/view 

https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view
https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view
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Figure 48. Trend of fleet average emission factors for CO2 (top left), NOx (top right), PM (bottom left), VOC (bottom right) 

This set of emission factors allows for quick emission estimates at link level, provided total traffic volume and 
segment length are available from the traffic model. With a distinction of fleet composition per member state and 
a fleet projection up to 2050 (and associated reduction in emission factor) implicit in the values, this set of emission 
factors allows for a more detailed and future proof emission estimates in traffic models compared to, for example, 
CAR or OSPM. 

7.1.2.2. Account for speed variation 

Aggregate emission models do not capture the dependency of emission factors on vehicle speed. In a microscopic 
approach, emissions of cars are higher when accelerating to increase momentum and at higher speeds to 
overcome friction and aerodynamic resistance. As such, theoretically, the emission factor should increase with 
speed. 

Macroscopic emission models, such as COPERT and HBEFA10, make abstraction of these microscopic 
characteristics and rather empirically estimate emission under different aggregated speed regimes. These speed 
regimes reflect an average driving pattern, a drive cycle, which includes accelerating, braking, etc. Start-stop traffic 
and urban traffic requires more acceleration and braking compared to a free-flow rural road or highway, and yet 
leads to lower average speeds. Because of the high frequency of accelerations, emission at these low speeds (e.g., 
congestion) are in fact higher compared to a free-flow traffic situation at, for example, 60-70km/h. As such, the 
typical relation of the emission factor versus the speed is not increasing with speed, yet U-shaped in nature. In 
macroscopic emission models such as COPERT, we expect high (average) emission factors at low (average) speeds, 

 

 

10 https://www.hbefa.net/e/index.html 

https://www.hbefa.net/e/index.html
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low (average) emission factors at medium (average) speeds and again high (average) emission factors at high 
(average) speeds as the energy to overcome friction and aerodynamic resistance increases at higher speeds. 

We aim to account for this effect by applying a speed correction factor to the aggregate emission factor discussed 
in the previous section, under the premise that speed and flow at link level is computed by the traffic model. 

We explored both HBEFA and COPERT as a source to incorporate the speed-effect on the emission factors: 

• HBEFA does not include speed explicitly as a determinant for the emission factor, but rather uses a set of 
traffic conditions the reflect a specific driving pattern: free-flow, heavy traffic, light congestion, heavy 
congestion, start-stop.  

• COPERT holds continuous emission functions with speed as a variable. The function is typically a second 
order polynomial in speed with vehicle type-dependent coefficients.  

The benefit of HBEFA is that the driving patterns are easily identifiable traffic situations, however the speed is not 
clearly known. COPERT on the other hand has the benefit of directly using traffic model output (speed) as an input 
for emission factor estimation. In neither case it is clear whether the granularity is directly applicable to the 
microscopic level of the traffic model. The limitation of using macroscopic emission models in microscopic traffic 
models are further highlighted in De Nunzio (2021). 

For simplicity, we opt for COPERT to estimate the speed correction factor. We make abstraction of the difference 
in coefficient values of the emission functions per vehicle type and use the vehicle fleet average to simulate the 
emission factors with 10 km/h intervals. We then compare the resulting value versus an “average” regime. The 
output is then a simple correction factor to the fleet average emission factor, discussed in the previous section. 
Figure 49 below shows the correction factor in 10km/h intervals for the 5 pollutants. 

 

Figure 49. Correction factor to the fleet-average emission factor, in 10km/h intervals 

As indicated, at lower speeds the correction factor is high, for some pollutants over 2, while in the optimal area of 
60-80km/h, the correction factor is below 1. Note that pollutants behave differently. 

There are some evident limitations with this approach: 
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• The speed-dependency can be different per vehicle type, so the approach of an aggregation at fleet-level 
is not correct. Ideally the speed-correction should be done at the vehicle level and only aggregated after 
the correction to produce a speed-corrected fleet-average emission factor. For simplicity we opted to 
stick to a single, per pollutant, speed correction factor function. 

• Speed variation within a single link is not accounted for in this approach. In principle, the speed at link 
level, as output from the traffic model, can be further segmented in sub-segments with more continuous 
speed regimes (e.g., a segment of 500m at an average of 45 km/h can be split in a 450m section free-flow 
at an average speed of 50km/h and 50m stop/go at an average speed of 25km/h ).  

7.1.3. Application within MOMENTUM 

The emission model will be demonstrated in the case study of Leuven, as in this case study the traffic flows on a 
substantial part of the network are monitored. Because of this, there is less uncertainty about the input of the 
emission mode, namely the vehicle kilometres, and the emissions can be calculated more accurately. Similarly, 
the model will also be demonstrated in the case study of Regensburg. 

7.2. Emission module – Dynamic emission model 

7.2.1. Motivation and objective 

One of the objectives of the MOMENTUM project is to develop transferable methodologies to enable cities in 
assessing various policies oriented towards sustainable mobility solutions, which could avoid or mitigate negative 
environmental effects. For this purpose, emission models are needed to estimate adequate emission indicators in 
order to evaluate the implementation of new mobility services in the area of interest. The focus of this project is 
on macroscopic emissions models, which can be used on relatively large-scale networks. 

The emission modelling approach presented in this section is referred to as a dynamic emission model to 
distinguish it from the static emission model presented in Section 6.1. Hence, the main difference between the 
macroscopic dynamic emission model and the static emission model is that the dynamic model considers average 
speed time series (i.e., varying speeds over time), while the static model uses constant speed over time. The 
motivation behind the selection of the dynamic approach is the limitation of macroscopic emission models based 
on constant average-speed that was mentioned above. These models are not able to predict accurate emissions 
at low speeds as well, as the uncertainty from averaging the link speeds increases for short links. Hence, an 
improved approach for deriving the emissions is to use average speeds over time from a set of vehicle trajectories. 

In this section, a macroscopic dynamic emission model is presented for calculating the traffic emissions and their 
potential reduction due to the introduction of the new shared mobility services that are investigated within the 
MOMENTUM project. The proposed model aims to enable cities to perform environmental assessments of road 
emissions for the area of interest. Moreover, the contribution to those emissions can be evaluated depending on 
the characteristics of the vehicle fleet. This distinction is important as vehicle emissions are strongly associated 
with the vehicle category (passenger cars, buses, trucks, etc.) and sub-categories representing the fuel type, and 
vehicle emission standard (Lejri et al., 2018). Analysis of emissions can be used to identify the adequate 
intervention areas to deploy exhaust pollution emission reduction strategies or to introduce a low emission zone 
by excluding specific vehicle types from the fleet. 

7.2.1.1. Literature review 

The estimation of vehicular emissions is of high importance in urban planning and transport management, as the 
pollutants emitted by road vehicles are detrimental to air quality. The assessment of environmental impacts of 
any transport application is critical in the decision-making process under each investigated policy or intervention. 
Hence, it is important for city planners and authorities to be able to identify and quantify the effects of a mobility 
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policy on emissions, such as road traffic emissions. Emission levels depend on vehicle characteristics (model size, 
fuel type, technology) as well as the driving dynamics (e.g., vehicle speed, acceleration, gear selection) depending 
on the traffic conditions. However, accurate real-world emission measurements are often impractical and cost-
prohibitive to obtain at road network level as they would require constant emission measurement of all vehicles 
in the area and study period (Grote et al., 2016; Smit 2007; Smit et al., 2010). Several methods are used to measure 
vehicle emissions such as on-board emission measurements (PEMS), remote sensing, near-road air quality 
measurements, and tunnel studies, each of them associated with some advantages and limitations (Smit et al., 
2010). Depending on the measurement technology that is used, emission data may be available for a few locations 
only, for limited time and vehicle sample or limited range of traffic conditions. Moreover, assumptions are 
required to convert the measured values to emission factors (Smit et al., 2010).  

Therefore, the focus of numerous studies in the literature has been on the empirical estimation and modelling of 
vehicular emissions (see Smit et al., 2010; Grote et al., 2016; Saedi et al., 2020 for detailed reviews). The existing 
methodologies for emissions modelling can be broadly split into three categories: microscopic, macroscopic, and 
mesoscopic modelling. The main difference between the emission modelling approaches lies in the spatial and 
temporal resolution they offer. A detailed description of the different emission modelling approaches can be 
found in Samaras et al. (2019) and Saedi et al. (2020). The remaining literature review focuses on a brief summary 
of macroscopic emission models, as for the scope of this project emissions need to be estimated in a strategic 
context. 

Macroscopic models have been developed that can estimate emissions for large-scale areas and mainly use 
average speed as an input to predict emissions and fuel consumption (Boulter et al., 2012). The main advantage 
of the average speed models is that they do not rely on detailed vehicle information, such as trajectories. However, 
it has been shown in the literature (Samaras et al., 2019) that the usage of average speeds as a single explanatory 
variable in the emissions models might not be an adequate indicator in predicting accurate emissions. In particular, 
the emissions could be underestimated for low average speeds, as those could represent different congestion 
levels. The inaccuracy could result from the averaging out of diverse traffic conditions at different network 
locations (e.g., stop-and-go and free-flow conditions). One approach to overcome the main limitation of 
macroscopic average speed models is the utilisation of speed dynamics in the emissions modelling (Tate, 2015). 
Another limitation of the macroscopic emission models is that they systematically ignore important vehicle 
operations and interactions, such as vehicle acceleration and braking, that can be accurately represented in 
microscopic models (Sun et al., 2015; Saedi et al., 2020; Tsanakas et al., 2020). 

7.2.2. Methodology 

The proposed emission model involves the estimation of polynomial functions, which depend on dynamic speed 
profiles over time and different pollutant types. In addition, the estimated emissions are distinguished per vehicle 
type (car, bus, taxi, truck, etc.), engine combustion type (diesel and petrol) and vehicle Euro Emission Standard 
(Euro 0 – Euro 6). Currently, the model estimates two pollutants, namely carbon dioxide (CO2) and nitrogen oxides 
(NOx). Additional pollutants (such as CO, PM and HC) can be modelled depending on the data availability.   

Due to a lack of real emission measurements for the cities involved in the project, synthetic data are obtained 
from microscopic simulation to estimate and validate the proposed emission model. Based on the synthetic 
emission and traffic data, regression analyses are performed to fit the observations and estimate emission curves 
per pollutant and vehicle type as well as for different speed ranges. The estimated curves are, in turn, integrated 
with the dynamic traffic assignment simulator Aimsun Next (Aimsun, 2020), which can be used to perform 
simulation-based analyses in order to evaluate the network-wide emission impacts under various scenarios with 
respect to the network demand and supply. 

Figure 50 depicts the proposed framework. The vehicle fleet composition (i.e., the proportions of vehicle and fuel 
types, Euro segment class) for the given demand and network is defined first. Subsequently, traffic assignment is 
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performed to generate the required traffic flow indicators (link speeds and flows) over time and can be aggregated 
at the desired time resolution. Finally, the network emissions estimates are calculated based on the fitted 
polynomial functions. The emissions can be evaluated for each predefined vehicle fleet composition in the 
network (e.g., by vehicle type, fuel type, and Euro emission segment). The proposed approach can be seamlessly 
adopted to fit the emission curves for any real emission data as those become available for a specific city. 
Subsequently, the aggregate emission indicators can be obtained by performing a simulation analysis for the study 
area of interest. 

 
Figure 50. Framework for estimating a dynamic macroscopic emission model 

7.2.2.1. Estimation methodology 

As mentioned above, the emissions model estimation was based on average speeds as well as synthetic emission 
measurements that were obtained from a set of simulated vehicle trajectories from a test network. A combination 
of two polynomial relationships is chosen to derive the emission factors for CO2 and NOx in order to better 
describe the patterns observed in the synthetic emissions data. Specifically, depending on a predefined average 
speed threshold, a second-order and a third-order polynomial functions are used to fit the synthetic data as 
presented in the equations below: 

 𝐸𝑝 = 𝑎𝑣 2 + 𝑏 for  𝑣 < 10 𝑘𝑚/ℎ (51) 

 𝐸𝑝 = 𝑎𝑣 3 + 𝑏𝑣 2 + 𝑐 for  𝑣 ≥ 10 𝑘𝑚/ℎ   (52) 
 

where 𝐸𝑝 is the emission (grams/km) of pollutant 𝑝 ∈{𝐶𝑂2,𝑁𝑂𝑥 }, 𝑣 is the average speeds (km/h) and 𝑎,𝑏, and 

𝑐are the estimated coefficients derived by the regression analysis.  

7.2.2.2. Estimated emissions and insights 

Figure 51 and Figure 52 illustrate indicative examples of estimated speed-emissions curves, for 𝑁𝑂𝑥and 𝐶𝑂2, 
respectively, for specific vehicle euro classes and engine fuel types, derived based on the simulated synthetic data 
as well as equations(51) and (52). In general, the curves indicate that the emissions of 𝐶𝑂2 decrease as the vehicle 
speed increases, while, for 𝑁𝑂𝑥, the emission factors increase with increasing speeds. These trends are consistent 
across varying vehicle characteristics (i.e., fuel type and Euro class). 
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Figure 51. Estimated curves for (g/km) emissions versus speeds (km/h) for (a) diesel passenger cars Euro 4, (b) diesel passenger cars 
Euro 6, (c) petrol passenger cars Euro 4 and, (d) petrol passenger cars Euro 6. 
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Figure 52. Estimated curves for (g/km) emissions versus speeds (km/h) for (a) diesel passenger cars Euro 4, (b) diesel passenger cars 
Euro 6, (c) petrol passenger cars Euro 4 and, (d) petrol passenger cars Euro 6. 

7.2.3.  Application within MOMENTUM 

Within the scope of the MOMENTUM project, the proposed emissions model can be used to assess the impact of 
new transport modes and services with respect to the network emissions. The estimated emissions curves are 
integrated into the simulation software Aimsun Next (Aimsun, 2020). As emission observations become available 
for any city, the estimated curves presented earlier can be adjusted to fit the data of the specific city. 
Subsequently, simulation analysis can be performed under different investigated scenarios to obtain network-
wide emission indicators from each vehicle type and sub-category within the vehicle fleet. The combination of 
data-driven and simulation-based approach for estimating the emissions can be more adequate for large-scale 
urban road networks. 

As a future direction, evaluation of the accuracy of the simulated emission estimates for the investigated 
pollutants needs to be conducted against real-world measurements. Moreover, the emissions model can be 
extended to account for the vehicle acceleration, road gradient and speed limits, in combination with the vehicle 
speeds. This refined approach is expected to provide more accurate modelling of traffic emissions. For this 
purpose, a microscopic traffic flow model would be needed to generate the emission value.

a) b) 

c) d) 
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8. Conclusions 
In this deliverable, we have presented the models and algorithms developed in MOMENTUM project, which can 
properly capture and simulate the impact of emerging mobility concepts and solutions. The presented models and 
algorithms were designed and developed considering the test cases described in Deliverable 2.2. Besides, the 
benefits for cities outside the MOMENTUM case studies are also considered.  

The main outcomes of this deliverable could be summarized as follows: 

1. A modular approach, which encompasses the various developments required to model emerging mobility 
solutions. This could be used as a basis by the future researchers for extending the research on modelling 
frameworks for emerging mobility solutions. 

2. An intermediate modelling approach, which integrates the principles of agent-based approaches within 
the traditional four-step approach, providing an opportunity for cities to evaluate and integrate shared 
mobility systems and form long term planning strategy. 

3. A set of models and algorithms for modelling different aspects of the emerging mobility solutions. This 
set of models and algorithms includes: 

3.1 A model for demand elasticity calculation (i.e., estimation of induced demand), with the 
functional form based on a logit model.  

3.2 A multi-method framework for the estimation of demand for a small-sized station based round 
trip sharing system, which are usually utilized for irregular and infrequent trips. 

3.3 OD matrix clustering approaches for selecting the best matching matrix for the specific 
characteristics of a day or a season of study. 

3.4 A disaggregate mode choice model which can estimate the modal split between conventional-
systems-as-a-whole, bike-sharing, car-sharing and ridesharing. 

3.5 A data-driven shared mobility demand model that utilizes general mobility OD matrix, weather 
observations at each origin zone and land use shares of each zone to predict the number of 
trips captured by a shared mobility service. 

3.6 Synthetic population generation based on a combination of an iterative proportional update 
procedure and statistical procedures.  

3.7 Operational research and artificial intelligence tools for planning shared mobility services and 
mimicking the operations of the services. 

3.8 An aggregate car-ownership model that can be used to calculate car-ownership at the level of 
traffic zones, which in turn, can be used as a basis for synthetic population generation.  

3.9 A disaggregate car ownership model for the re-estimation of car-ownership for the synthetic 
population, based on outputs from fleet management modules and traffic assignment. 

3.10 A data-driven traffic assignment method for urban environments, which considers traffic in 
local roads, circumventing the problems that arise in classical assignment procedures due to 
centroid connector placement. 

3.11 A hybrid dynamic traffic assignment framework wherein a dynamic mesoscopic model is used 
in specific area of interest and static macroscopic model in the remainder network. 

3.12 A static emission model based on a simplified COPERT-based EMEP approach, which can be 
easily integrated with the static traffic assignment models. 

3.13 A dynamic emission model that takes advantage of dynamic speed profiles, in case of 
availability of a dynamic traffic assignment model. 

 
The outcomes 3.4 and 3.5 have a substitutional nature, since the use of one negates the need for the other. Mode 
choice models are the commonly used methods in transport models. However, if one wishes to use shared 
mobility service data, outcome 3.5 can be used to replace the disaggregate mode choice model (i.e., outcome 3.4). 
The output of outcome 3.5 is an OD matrix of shared mobility and the information of this matrix will get into the 
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Synthetic population module. Since the entry matrix is already mode specific, the output of the synthetic 
population does not need to pass through the disaggregate mode choice model, rather it will enter directly to the 
fleet management module. Similarly, static (outcome 3.12) and dynamic (outcome 3.13) emission models have a 
substitution nature. Static traffic assignment models are the usual methods employed in the traditional strategic 
4-step approach, and hence, a static emission model is a necessity. Nevertheless, there is a growing interest in 
dynamic traffic assignment, and aiming at such models, a dynamic emission model has also been developed. 
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Annex 

A1. Induced demand calibration details  

Multidimensional linear 

The definition of elasticity can be written as 

 𝜂𝑗

𝐷𝑗

𝑥
=

∂𝐷𝑗

∂𝑥
= ∑

∂𝐷𝑗

∂𝑈𝑘

𝑘∈B\{𝑖}

∂𝑈𝑘

∂𝑥
+

∂𝐷𝑗

∂𝑈𝑖

∂𝑈𝑖

∂𝑥
, (1) 

from which it immediately follows that 
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In the general case, this is a set of equations that need to be solved consistently for ∂𝐷𝑗/ ∂𝑈𝑖 for every 𝑖 ∈ B. If 

all 𝑈𝑘, except for 𝑈𝑖, are independent of 𝑥, the formula reduces to 
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One-dimensional linear 

The quantity ∂𝐷/ ∂𝑥|𝑇=0 should be obtained through calibration. From the second expression for elasticity, it can 
be derived that 

 
∂𝐷

∂𝑥
=

1

𝑃𝑗
[
𝐷𝑗

𝑥
𝜂𝑗 − 𝐷

∂𝑃𝑗

∂𝑥
] (4) 

Since the Taylor-expansion is only one-dimensional, only one parameter needs to be calibrated. Which alternative 
𝑗 is used for this calibration, is dependent on the availability of the corresponding (cross-)elasticities 𝜂𝑗. The result 
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is obtained, where 
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Up to this point, all 𝑈𝑘 could depend on 𝑥. If only 𝑈𝑗 is dependent on 𝑥, one can use the relation 
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to further reduce the demand expression to 
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(

 
 

1 + (𝑈 − 𝑈0)(1 +
[
1
𝑥

𝜂𝑗 −
∂𝑈𝑗

∂𝑥
]

∂𝑈/ ∂𝑥
|

𝑇=0

)

)

 
 

. (8) 

Logit-like 

Using 𝐷 =
𝑃t

𝑃0
t 𝐷0, the second expression for elasticity can be transformed into 
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Notice that 𝑃𝑗 and 𝑃t are functions, while 𝑃0
t  and 𝐷0 are function evaluations of 𝑃t and 𝐷 for the base scenario. 

The expression is then 
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The derivative of the share of travellers 𝑃t = e𝑈/(𝐾 + e𝑈) is easily obtained: 
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The remaining derivative of the generalized utility function 𝑈 is 
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where the last step employs the corresponding derivative of the aggregated utility logsum for the alternatives 
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In the last equality, the share 𝑃𝑘 of travellers choosing for alternative 𝑘 was recognized. 

Combining above expressions gives 
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Since 𝐾 is assumed to remain constant, calibration can be done using the base scenario. Evaluating the expression 
for the base scenario yields 

 𝜂𝑗

𝐷𝑗

𝑥
|
𝑇=0

− 𝐷0

d𝑃𝑗

d𝑥
|
𝑇=0

= 𝑃0
𝑗
𝐷0(1 − 𝑃0

t)∑𝑃0
𝑘

𝑘

d𝑈𝑘

d𝑥
|
𝑇=0

. (15) 

Further, using the relation 

 
d𝑃𝑗

d𝑥
= 𝑃𝑗 (

∂𝑈𝑗

∂𝑥
− ∑𝑃𝑘

𝑘

d𝑈𝑘

d𝑥
) (16) 

simplifies the expression to 

 𝜂𝑗

𝐷0
𝑗

𝑥0
− 𝐷0𝑃0

𝑗 ∂𝑈𝑗

∂𝑥
|
𝑇=0

= −𝑃0
𝑗
𝐷0𝑃0

t ∑𝑃0
𝑘

𝑘

d𝑈𝑘

d𝑥
|
𝑇=0

. (17) 

The share of travellers in the base scenario can be extracted and equated to its definition: 

 𝑃0
t =

𝐷0𝑃0
𝑗 ∂𝑈𝑗

∂𝑥 |
𝑇=0

− 𝜂𝑗
𝐷0

𝑗

𝑥0

𝑃0
𝑗
𝐷0 ∑ 𝑃0

𝑘
𝑘

d𝑈𝑘

d𝑥 |
𝑇=0

=
e𝑈0

𝐾 + e𝑈0
. (18) 

Elementary algebra and the relation 𝐷0
𝑗
= 𝐷0𝑃0

𝑗
 then lead to 
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 𝐾 = e𝑈0

[
 
 
 ∑ 𝑃0

𝑘
𝑘

d𝑈𝑘

d𝑥
|
𝑇=0

d𝑈𝑗

d𝑥
|
𝑇=0

−
𝜂𝑗

𝑥0

− 1

]
 
 
 

. (19) 

This relation can be used to calibrate 𝐾 (and thus 𝑈nt), given the 𝑥-elasticity of the demand 𝐷𝑗 of alternative 𝑗 
with as boundary conditions: 

• the base-scenario share 𝑃0
𝑘 of alternative 𝑘 

• the base-scenario total utility of travelling 𝑈0 

• the base-scenario 𝑥-sensitivity of the utility 𝑈𝑗 for alternative 𝑗 
 

A2. Synthetic population generation 

The Iterative Proportional Updating (IPU) 

A brief description of the generalised procedure of the IPU heuristic method is presented below using a simple 
example illustrated on Table 21. A detailed description can be found in Ye et al. (2009). In summary, the algorithm 
consists of the following main steps: 

1. Generate a frequency matrix showing the household type and the frequency of different person types 
within each household for the sample. 

2. Initially it assumes equal weights (1.0) for all households in the sample, in a specific geographic area.  
3. The algorithm then updates the weights for each household type in an iterative process in order to match 

the aggregate distributions. For example, the weights for the first household level constraint are adjusted 
by dividing the number of households in that category (i.e., defined by the constraint value) by the 
weighted sum of the first household type column. 

4. The weights for all households of each household type are multiplied by the respective ratios to satisfy 
the constraints. 

5. The weights are then updated to satisfy person-level variable constraints. For example, the weights for 
households containing persons of type 1 are updated and adjusted to match the distribution of person 
type 1. 

6. An iteration is defined as the completion of weight updating for all types of households and persons. 
7. Finally, the absolute value of the relative difference between the weighted sum and the corresponding 

constraint are used as a goodness-of-fit measure as a means of assessing the process. 

After the calibration of weights using the IPU algorithm, households may be randomly drawn from the sample 
data to generate the synthetic population. 
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Table 21. An Example of the Iterative Proportional Updating (IPU) Algorithm (source: Ye et al., 2009) 

Control variables 

Table 22 presents an example of the commonly used control variables in the literature. 

Analysis unit Variable name Variable description 

Household 

Household type 

The group of the household type (e.g., 

family with children, without children, 

single person) 

Household size Number of people in the household 

Income Income group of the household 

Person 

Age groups Age group of a person 

Gender Female, Male or other 

Education 
The education level (e.g., primary, 

bachelor) 

Car-ownership Number of cars owned by household 

Employment The employment status of a person 

Public Transport subscription PT subscription available or not 

Table 22. Example of control variables 

 

A3. Ridesharing: planning 

Objective function of the ridesharing planning model is as follows: 
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min
 

f(𝑠𝑦𝑠𝑡𝑒𝑚) =   ( ∑ Access Duration𝑖

∀ 𝑖 ∈ 𝑃𝑅

  +   ∑ Waiting Duration𝑖

∀ 𝑖 ∈ 𝑃𝑅

 

+ ∑ Trip Duration𝑖

∀ 𝑖 ∈ 𝑃𝑅

)  × Value Of Time 

+ (  ∑ Waiting Duration𝑖

∀ 𝑖 ∈ 𝐷𝑅

  + ∑ Trip Duration𝑖

∀ 𝑖 ∈ 𝐷𝑅

) × Value Of Driver′s Time   

+ ∑ Rejected Request𝑖
∀ 𝑖 ∈ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

× Revenuei                               

+ ∑  

∀ 𝑗 ∈ 𝐷𝑅 

Maintenancej  × Distance j ÷ Utilizationj         

+   ∑ Fixed Cost𝑗 ×  Driver𝑗

∀ 𝑗 ∈ 𝐷𝑅 

× Durationj  ÷ Utilizationj          

+ ∑ f ( Distance 𝑗 ,

∀ 𝑗 ∈ 𝐷𝑅 ∪ 𝑂𝑇𝐹

Duration j )  × 𝑓𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒    

+ ∑ Renting Durationj 

∀ 𝑗 ∈  𝑂𝑇𝐹

 × ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑓𝑒𝑒 

(20) 

A4. Bike-sharing: planning 

Objective function of the bike-sharing planning model is as follows: 

 

min
 

f(𝑠𝑦𝑠𝑡𝑒𝑚) =   ( ∑ Access Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

  + ∑ Trip Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

)

× Value Of Time 

+ ∑  

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

Maintenancej  × Distance j        

+   ∑ Fixed Cost𝑗 ×  Driver𝑗

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

× Durationj 

÷ Utilizationj          

+ ∑ f ( Distance 𝑗 ,

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

Duration j )  × 𝑓𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒       

+   ∑ Station Fixed Cost𝑗   
∀ 𝑗 ∈ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠

     

(21) 

 

A5. Car-sharing: planning 

Objective function of the car-sharing planning model is as follows: 
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min
 

f(𝑠𝑦𝑠𝑡𝑒𝑚) =   ( ∑ Access Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

  + ∑ Trip Duration𝑖

∀ 𝑖 ∈ 𝑇𝑟𝑖𝑝

)

× Value Of Time 

                              + ∑  

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

Maintenancej  × Distance j        

+   ∑ Fixed Cost𝑗 ×  Driver𝑗

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

× Durationj 

÷ Utilizationj          

+ ∑ f ( Distance 𝑗 ,

∀ 𝑗 ∈ 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑅𝑜𝑢𝑡𝑒

Duration j )  × 𝑓𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒       

+   ∑ Station Fixed Cost𝑗   
∀ 𝑗 ∈ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠

             

                            + ∑  

∀ 𝑗 ∈ 𝐶𝑎𝑟𝑇𝑟𝑖𝑝

Maintenancej  × Distance j  +   fixed Costj  × Distance j    

(22) 

 

 

 

 

 

 


